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Preface to the Second Edition

Over the decade and a half since I wrote the first edition, nothing has altered my
belief in the soundness of the overall approach taken here. This is based on the
response of teachers, students, and my own occasional rereading of the book. I was
generally quite happy with the book, although there were portions where I felt 1
could have done better and portions which bothered me by their absence. I welcome
this opportunity to rectify all that.

Apart from small improvements scattered over the text, there are three major
changes. First, I have rewritten a big chunk of the mathematical introduction in
Chapter 1. Next, I have added a discussion of time-reversal invariance. I don’t know
how it got left out the first time—I wish I could go back and change it. The most
important change concerns the inclusion of Chaper 21, “Path Integrals: Part I1.”
The first edition already revealed my partiality for this subject by having a chapter
devoted to it, which was quite unusual in those days. In this one, I have cast off all
restraint and gone all out to discuss many kinds of path integrals and their uses.
Whereas in Chapter 8 the path integral recipe was simply given, here I start by
deriving it. I derive the configuration space integral (the usual Feynman integral),
phase space integral, and (oscillator) coherent state integral. I discuss two applica-
tions: the derivation and application of the Berry phase and a study of the lowest
Landau level with an eye on the quantum Hall effect. The relevance of these topics
is unquestionable. This is followed by a section of imaginary time path integrals—
its description of tunneling, instantons, and symmetry breaking, and its relation to
classical and quantum statistical mechanics. An introduction is given to the transfer
matrix. Then I discuss spin coherent state path integrals and path integrals for
_fErl_nions. These were thought to be topics too advanced for a book like this, but I
believe this is no longer true. These concepts are extensively used and it seemed a
gtood idea to provide the students who had the wisdom to buy this book with a head
start.

How are instructors to deal with this extra chapter given the time constraints?
_1 suggest omitting some material from the earlier chapters. (No one I know, myself
lnCll..ldfid, covers the whole book while teaching any fixed group of students.) A
realistic option is for the instructor to teach part of Chapter 21 and assign the rest
as reading material, as topics for take-home exams, term papers, etc. To ignore it,
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I think, would be to lose a wonderful opportunity to expose the student to ideas
that are central to many current research topics and to deny them the attendant
excitement. Since the aim of this chapter is to guide students toward more frontline
topics, it is more concise than the rest of the book. Students are also expected to
consult the references given at the end of the chapter.

Over the years, | have received some very useful feedback and 1 thank all those
students and teachers who took the time to do so. I thank Howard Haber for a
discussion of the Born approximation; Harsh Mathur and Ady Stern for discussions
of the Berry phase; Alan Chodos, Steve Girvin, Hya Gruzberg, Martin Gutzwiller,
Ganpathy Murthy, Charlie Sommerfeld, and Senthil Todari for many useful com-
ments on Chapter 21. I am most grateful to Captain Richard F. Malm, U.S.C.G.
(Retired), Professor Dr. D. Schliiter of the University of Kiel, and Professor
V. Yakovenko of the University of Maryland for detecting numerous errors in the
first printing and taking the trouble to bring them to my attention. I thank Amelia
McNamara of Plenum for urging me to write this edition and Plenum for its years
of friendly and warm cooperation. Finally, I thank my wife Uma for shielding me
as usual from real life so I could work on this edition, and my battery of kids (revised
and expanded since the previous edition) for continually charging me up.

R. Shankar

New Haven, Connecticut



Preface to the First Edition

Publish and perish—Giordano Bruno

Given the number of books that already exist on the subject of quantum mechanics,
one would think that the public needs one more as much as it does, say, the latest
version of the Table of Integers. But this does not deter me (as it didn’t my predeces-
sors) from trying to circulate my own version of how it ought to be taught. The
approach to be presented here (to be described in a moment) was first tried on a
group of Harvard undergraduates in the summer of '76, once again in the summer
of *77, and more recently at Yale on undergraduates (*77-"78) and graduates ("78-
*79) taking a year-long course on the subject. In all cases the results were very
satisfactory in the sense that the students seemed to have learned the subject well
and to have enjoyed the presentation. 1t is, in fact, their enthusiastic response and
encouragement that convinced me of the soundness of my approach and impelled
me to write this book.

The basic idea is to develop the subject from its postulates, after addressing
some indispensable preliminaries. Now, most people would agree that the best way
to teach any subject that has reached the point of development where it can be
reduced to a few postulates is to start with the latter, for it is this approach that
gives students the fullest understanding of the foundations of the theory and how it
is to be used. But they would also argue that whereas this is all right in the case of
special relativity or mechanics, a fypical student about to learn quantum mechanics
seldom has any familiarity with the mathematical language in which the postulates
are stated. I agree with these people that this problem is real, but I differ in my belief
that it should and can be overcome. This book is an attempt at doing just this.

It begins with a rather lengthy chapter in which the relevant mathematics of
vector spaces developed from simple ideas on vectors and matrices the student is
assumed to know. The level of rigor is what 1 think is needed to make a practicing
quantum mechanic out of the student. This chapter, which typically takes six to
eight lecture hours, is filled with examples from physics to keep students from getting
too fidgety while they wait for the “real physics.” Since the math introduced has to
be taught sooner or later, I prefer sooner to later, for this way the students, when
they get to it, can give quantum theory their fullest attention without having to
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battle with the mathematical theorems at the same time. Also, by segregating the
mathematical theorems from the physical postulates, any possible confusion as to
which is which is nipped in the bud.

This chapter is followed by one on classical mechanics, where the Lagrangian
and Hamiltonian formalisms are developed in some depth. It is for the instructor to
decide how much of this to cover; the more students know of these matters, the
better they will understand the connection between classical and quantum mechanics.
Chapter 3 is devoted to a brief study of idealized experiments that betray the
inadequacy of classical mechanics and give a glimpse of quantum mechanics.

Having trained and motivated the students 1 now give them the postulates of
gquantum mechanics of a single particle in one dimension. I use the word “postulate”
here to mean ‘“‘that which cannot be deduced from pure mathematical or logical
reasoning, and given which one can formulate and solve quantum mechanical prob-
lems and interpret the results.” This is not the sense in which the true axiomatist
would use the word. For instance, where the true axiomatist would just postulate
that the dynamical variables are given by Hiibert space operators, 1 would add the
operator identifications, i.e., specify the operators that represent coordinate and
momentum (from which others can be built). Likewise, I would not stop with the
statement that there is a Hamiltonlan operator that governs the time evolution
through the equation #d|y)/8t=H|y); I would say the H is obtained from the
classical Hamiltonian by substituting for x and p the corresponding operators. While
the more general axioms have the virtue of surviving as we progress to systems of
more degrees of freedom, with or without classical counterparts, students given just
these will not know how to calculate anything such as the spectrum of the oscillator.
Now one can, of course, try to “derive” these operator assignments, but to do so
one would have to appeal to ideas of a postulatory nature themselves. (The same
goes for “deriving” the Schrodinger equation.) As we go along, these postulates are
generalized to more degrees of freedom and it is for pedagogical reasons that these
generalizations are postponed. Perhaps when students are finished with this book,
they can free themselves from the specific operator assignments and think of quantum
mechanics as a general mathematical formalism obeying certain postulates (in the
strict sense of the term).

The postulates in Chapter 4 are followed by a lengthy discussion of the same,
with many examples from fictitious Hilbert spaces of three dimensions. Nonetheless,

~ students will find it hard. It is only as they go along and see these postulates used

over and over again in the rest of the book, in the setting up of problems and the
interpretation of the results, that they will catch on to how the game is played. It is
hoped they will be able to do it on their own when they graduate. I think that any
attempt to soften this initial blow will be counterproductive in the long run.

Chapter 5 deals with standard problems in one dimension. It is worth mentioning
that the scattering off a step potential is treated using a wave packet approach. If
the subject seems too hard at this stage, the instructor may decide to return to it
after Chapter 7 (oscillator), when students have gained more experience. But I think
that sooner or later students must get acquainted with this treatment of scattering.

The classical limit is the subject of the next chapter. The harmonic oscillator is
discussed in detail in the next. It is the first realistic problem and the instructor may
be eager to get to it as soon as possible. If the instructor wants, he or she can discuss
the classical limit afier discussing the oscillator.



We next discuss the path integral formulation due to Feynman. Given the intui-
tive understanding it provides, and its elegance (not to mention its ability to give
the full propagator in just a few minutes in a class of problems), its omission from
so many books is hard to understand. While it is admittedly hard to actually evaluate
a path integral (one example is provided here), the notion of expressing the propag-
ator as a sum over amplitudes from various paths is rather simple. The importance
of this point of view is becoming clearer day by day to workers in statistical mechanics
and field theory. I think every effort should be made to include at least the first three
(and possibly five} sections of this chapter in the course.

The content of the remaining chapters is standard, in the first approximation.
The style is of course peculiar to this author, as are the specific topics. For instance,
an entire chapter (11) is devoted to symmetries and their consequences, The chapter
on the hydrogen atom also contains a section on how to make numerical estimates
starting with a few mnemonics. Chapter 15, on addition of angular momenta, also
contains a section on how to understand the “accidental’” degeneracies in the spectra
of hydrogen and the isotropic oscillator. The quantization of the radiation field is
discussed in Chapter 18, on time-dependent perturbation theory. Finally the treat-
ment of the Dirac equation in the last chapter (20) is intended to show that several
things such as electron spin, its magnetic moment, the spin-orbit interaction, etc.
which were introduced in an ad hoc fashion in earlier chapters, emerge as a coherent
whole from the Dirac equation, and also to give students a glimpse of what lies
ahead. This chapter also explains how Feynman resolves the problem of negative-
energy solutions {in a way that applics to bosons and fermions).

For Whom Is this Book Intended?

In writing it, I addressed students who are trying to learn the subject by them-
selves; that is to say, I made it as self-contained as possible, included a lot of exercises
and answers to most of them, and discussed several tricky points that trouble students
when they learn the subject. But T am aware that in practice it is most likely to be
used as a class text. There is enough material here for a full year graduate course.
It is, however, quite easy so adapt it to a year-long undergraduate course. Several
sections that may be omitted without loss of continuity are indicated. The sequence
of topics may also be changed, as stated earlier in this preface. I thought it best to
let the instructor skim through the book and chart the course for his or her class,
given their level of preparation and objectives. Of course the book will not be particu-
larly useful if the instructor is not sympathetic to the broad philosophy espoused
here, namely, that first comes the mathematical training and then the development
of the subject from the postulates. To instructors who feel that this approach is all
right in principle but will not work in practice, I reiterate that it has been found to
work in practice, not just by me but also by teachers elsewhere.

The book may be used by nonphysicists as well. (I have found that it goes well
with chemistry majors in my classes.) Although I wrote it for students with no familiar-
ity with the subject, any previous exposure can only be advantageous.

Finally, I invite instructors and students alike to communicate to me any sugges-
tions for improvement, whether they be pedagogical or in reference to errors or
misprints.

X1
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\relude

; Our description of the physical world is dynamic in nature and undergoes frequent
" change. At any given time, we summarize our knowledge of natural phenomena by
means of certain laws. These laws adequately describe the phenomenon studied up
to that time, to an accuracy then attainable. As time passes, we enlarge the domain
of observation and improve the accuracy of measurement. As we do so, we constantly
check to see if the laws continue to be valid. Those laws that do remain valid gain
in stature, and those that do not must be abandoned in favor of new ones that do.

In this changing picture, the laws of classical mechanics formulated by Galileo,
Newton, and later by Euler, Lagrange, Hamilton, Jacobi, and others, remained
unaltered for almost three centuries. The expanding domain of classical physics met
its first obstacles around the beginning of this century. The abstruction came on two
fronts; at large velocities and small (atomic) scales. The problem of large velocities
was successfully solved by Einstein, who gave us his relativistic mechanics, whiie the
founders of quantum mechanics—Bohr, Heisenberg, Schrédinger, Dirac, Born, and
others—solved the problem of small-scale physics. The union of relativity and quan-
tum mechanics, needed for the description of phenomena involving simultaneously
large velocities and small scales, turns out to be very difficult. Although much pro-
gress has been made in this subject, called quantum field theory, there remain many
open questions to this date. We shall concentrate here on just the small-scale problem,
that is to say, on non-relativistic quantum mechanics.

The passage from classical to quantum mechanics has several features that are
common to all such transitions in which an old theory gives way to a new one;

(1) There is 2 domain D, of phenomena described by the new theory and a sub-
domain D, wherein the old theory is reliable (to a given accuracy).

(2) Within the subdomain D, either theory may be used to make quantitative pre-
dictions. It might often be more expedient to employ the old theory.

(3) In addition to numerical accuracy, the new theory often brings about radical
conceptual changes. Being of a qualitative nature, these will have a bearing on
all of D,,.

For example, in the case of relativity, D, and D, represent {macroscopic)
phenomena involving small and arbitrary velocities, respectively, the latter, of course,

X
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being bounded by the velocity of light. In addition to giving better numerical pre-
dictions for high-velocity phenomena, relativity theory alse outlaws several cherished
notions of the Newtonian scheme, such as absolute time, absolute length, unlimited
velocities for particles, etc.

In a similar manner, quantum mechanics brings with it not only improved
numerical predictions for the microscopic world, but also conceptual changes that
rock the very foundations of classical thought.

This book introduces you to this subject, starting from its postulates. Between
you and the postulates there stand three chapters wherein you will find a summary
of the mathematical ideas appearing in the statement of the postulates, a review of
classical mechanics, and a brief description of the empirical basis for the quantum
theory. In the rest of the book, the postulates are invoked to formulate and solve a
variety of quantum mechanical problems. It is hoped that, by the time you get to
the end of the book, you will be able to do the same yourself.

Note to the Student

Do as many exercises as you can, especially the ones marked = or whose results
carry equation numbers, The answer to cach exercise is given either with the exercise
or at the end of the book.

The first chapter is very important. Do not rush through it. Even if you know
the math, read it to get acquainted with the notation.

I am not saying it is an easy subject. But 1 hope this book makes it seem
reasonable.

Good luck.
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Mathematical Introduction

The aim of this book is to provide you with an introduction to quantum mechanics,
starting from its axioms. It is the aim of this chapter to equip you with the necessary
mathematical machinery. All the math you will need is developed here, starting from
some basic ideas on vectors and matrices that you are assumed to know. Numerous
examples and exercises related to classical mechanics are given, both to provide some
relief from the math and to demonstrate the wide applicability of the ideas developed
here. The effort you put into this chapter will be well worth your while: not only
will it prepare you for this course, but it will also unify many ideas you may have
learned piecemeal. To really learn this chapter, you must, as with any other chapter,
work out the problems.

1.1. Linear Vector Spaces: Basics

In this section you will be introduced to linear vector spaces. You are surely
familiar with the arrows from clementary physics encoding the magnitude and
direction of velocity, force, displacement, torque, etc, You know how to add them
and multiply them by scalars and the rules obeyed by these operations. For example,
you know that scalar multiplication is distributive: the multiple of a sum of two
vectors is the sum of the multiples. What we want to do is abstract from this simple
case a set of basic features or axioms, and say that any set of objects obeying the same
forms a linear vector space. The cleverness lies in deciding which of the properties to
keep in the generalization. If you keep too many, there will be no other examples;
if you keep too few, there will be no interesting results to develop from the axioms.

The following is the list of properties the mathematicians have wiscly chosen as
requisite for a vector space. As you read them, please compare them to the world
of arrows and make sure that these are indeed properties possessed by these familiar
vectors. But note also that conspicuocusly missing are the requirements that every
vector have a magnitude and direction, which was the first and most salient feature
drilled into our heads when we first heard about them. So you might think that in
dropping this requirement, the baby has been thrown out with the bath water,
However, you will have ample time to appreciate the wisdom behind this cheice as
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CHAPTER 1

you go along and see a great unification and synthesis of diverse ideas under the
heading of vector spaces. You will see examples of vector spaces that involve entities
that you cannot intuitively perceive as having either a magnitude or a direction.
While you should be duly impressed with all this, remember that it does not hurt at
all to think of these generalizations in terms of arrows and to use the intuition to
prove theorems or at the very least anticipate them.

Definition 1. A linear vector space V is a collection of objects |13,
125 ..., ¥ ..., | WD, ..., called vectors, for which there exists

1. A definite rule for forming the vector sum, denoted |V +| W)
2. A definite rule for multiplication by scalars a, b, . . ., denoted a| V) with the
following features:

o The result of these operations is another element of the space, a feature called
closure: |Vy+|WHeV.

e Scalar multiplication is distributive in the wvectors: a(|V)+|W>)=
alVi+al W,

o Scalar multiplication is distributive in the scalars: (a+b)|V>=a|lV>+b| V.

e Scalar multiplication is associative: a(b| V) )y=ab| V>,

o Addition is commutative: |VY+|WH=|W>+|V>.

o Addition is asseciative: | V> +(|WD+|ZD)=(|V>+ | WD)+ |2,

e There exists a aull vector |0y obeying | V> +|0>=|V>.

e For cvery vector | V) there exists an inverse under addition, |— V>, such that
1V + =V =]0),

There is a good way to remember all of these; do what comes naturaily.

Definition 2. The numbers a, b, . .. are called the field over which the vector
space is defined.

If the field consists of all real numbers, we have a real vector space, if they are
complex, we have a complex vector space. The vectors themselves are neither real
nor complex; the adjective applies only to the scalars.

Let us note that the above axioms imply

e |0> is unique, i.e., if |0") has all the properties of |03, then |0 =},
e OIF>=|0>.

o {=VO==|V>.

e |~V is the unique additive inverse of | 17).

The proofs are left as to the following exercise. You don’t have to know the proofs,
but you do have to know the statements.

Exercise I.1.1. Verify these claims. For the first consider |0 +10"> and use the advertised
properties of the two null vectors in turn. For the second start with [0>=(0+ 1}| V> +|—¥).
For the third, begin with [F>+(—|F>)=0{V>=|0>. For the last, let |W) also satisfy
| V> +| W) =]0}. Since |0} is unigue, this means | F>+|W)»=|V ) +|—F . Take it from here.
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Figure 1.1. The rule for vector addition. Note that it obeys axioms
{i)-(iii).

<

Exercise 1.1.2. Consider the set of all entities of the form (&, b, ¢) where the entries are
real numbers. Addition and scalar multiplication are defined as follows:

(a.b,e)yt{d. e, fi=(at+td, bte ct+f)
a(a, b, c)=(aa, ab, ac).

Write down the null vector and inverse of (a, b, ¢). Show that vectors of the form (e, 5, 1) do
not form a vector space.

Observe that we are using a new symbol | V') to denote a generic vector. This
object is called ker I and this nomenclature is due to Dirac whose notation will be
discussed at some length later. We do not purposely use the symbol ¥ 1o denote the
vectors as the first step in weaning you away from the limited concept of the vector as
an arrow. You are however not discouraged from associating with | V> the arrowlike
object till you have seen enough vectors that are not arrows and are ready to drop
the crutch.

You were asked to verify that the set of arrows qualified as a vector space as
you read the axioms. Here are some of the key ideas you should have gone over.
The vector space comsists of arrows, typical ones being ¥ and V', The rule for
addition is familiar: take the tail of the second arrow, put it on the tip of the first,
and so on as in Fig. 1.1.

Scalar multiplication by a corresponds to stretching the vector by a factor a.
This is a real vector space since stretching by a complex number makes no sense. (If
a is negative, we interpret it as changing the direction of the arrow as well as rescaling
it by |4|.) Since these operations acting on arrows give more arrows, we have closure.
Addition and scalar multiplication clearly have all the desired associative and distri-
butive features. The null vector is the arrow of zero length, while the inverse of a
vector is the vector reversed in direction.

So the set of all arrows qualifies as a vector space. But we cannot tamper with
it. For example, the set of all arrows with positive z-components do not form a
vector space: there is no inverse.

Note that so far, no reference has been made to magnitude or direction. The
point is that while the arrows have these qualities, members of a vector space need
not. This statement is pointless unless I can give you examples, so here are two.

Consider the set of all 2 x 2 matrices. We know how to add them and multiply
them by scalars (multiply all four matrix elements by that scalar). The corresponding
rules obey closure, associativity, and distributive requirements. The null matrix has
all zeros in it and the inverse under addition of a matrix is the matrix with all elements
negated. You must agree that here we have a genuine vector space consisting of
things which don’t have an obvious length or direction associated with them. When
we want to highlight the fact that the matrix A4 is an element of a vector space, we
may want to refer to it as, say, ket number 4 or; |4},
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As a second example, consider all functions f(x) defined in an interval 0 <x < L,
We define scalar multiplication by @ simply as af(x) and addition as pointwise
addition: the sum of two functions f and g has the value f(x)+g(x) at the point x.
The null function is zero everywhere and the additive inverse of fis —f.

Exercise 1.1.3. Do functions that vanish at the end points x=0 and x=1. form a vector
space? How about periodic functions obeying f{0)=7(L)? How about functions that obey
f(0) =47 If the functions do not qualify, list the things that go wrong.

The next concept is that of /inear independence of a set of vectors |15, (2> . .. ).
First consider a linear relation of the form

R

Y aliy=[0) (1.1.1)

We may assume without loss of generality that the left-hand side does not
contain any multiple of [0}, for if it did, it could be shifted to the right, and combined
with the |0 there to give |0 once more. (We are using the fact that any multiple
of |05 equals [0).)

Definition 3. The set of vectors is said to be linearly independent if the only such
linear relation as Eq. (1.1.1) is the trivial one with all ;= 0. If the set of vectors
is not linearly independent, we say they are linearly dependent.

Equation (1.1.1) tells us that it is not possible to write any member of the
linearly independent set in terms of the others. On the other hand, if the set of
vectors is linearly dependent, such a relation will exist, and it must contain at least
two nenzero coefficients. Let us say a3 #0. Then we could write

"

3= Y —iy (1.12)

i=1,23 43

thereby expressing |3 in terms of the others.

As a concrete example, consider two nonparallel vectors |13 and |25 in a plane.
These form a linearly independent set. There is no way to write one as a multiple of
the other, or equivalently, no way to combine them to get the null vector. On the
other hand, if the vectors are parallel, we can clearly write one as a multiple of the
other or equivalently play them against each other to get 0.

Notice I said 0 and not |0). This is, strictly speaking, incorrect since a set of
vectors can only add up to a vector and not a number, It is, however, common to
represent the null vector by 0.

Suppose we bring in a third vector |3) also in the plane. If it is parallel to either
of the first two, we already have a linearly dependent set. So let us suppose it is not.
Bui even now the three of them are linearly dependent. This is because we can write
one of them, say |3>, as a linear combination of the other two. To find the combina-
tion, draw a line from the tail of |3 in the direction of |1). Next draw a line
antiparallel to |2 from the tip of |3, These lines will intersect since |1 and |2} are



not parallel by assumption. The intersection point P will determine how much of
|13 and |2)> we want: we go from the tail of |3) to P using the appropriate multiple
of |1y and go from P to the tip of |3} using the appropriate multiple of |2).

Exercise 1.].4. Consider three elements from the vector space of real 2 x 2 matrices:

ol o] o] w3

Are they linearly independent? Support your answer with details. (Notice we are calling
these matrices vectors and using kets to represent them to emphasize their role as elements
of a vector space.)

Exercise 1.1.5. Show that the following row vectors are linearly dependent: (1,1, 0),
(1,0,1), and (3, 2, 1). Show the opposite for (1, 1,0, (1,0, 1), and (0, 1, 1).

Definition 4. A vector space has dimension n if it can accommodate a maximum
of n linearly independent vectors. It will be denoted by V"(R) if the field is real
and by V'(C) if the field is complex.

In view of the earlier discussions, the plane is two-dimensional and the set of
all arrows not limited to the plane define a three-dimensional vector space. How
about 2 x 2 matrices? They form a four-dimensional vector space. Here is a proof.
The following vectors are linearly independent:

1 0 o 1 |00 _[o o
‘D_[o 0] 12>—[0 0] 13> [1 0} 14 [0 1]

since it is impossible to form linear combinations of any three of them to give the
fourth any three of them will have a zero in the one place where the fourth does
not. So the space is at least four-dimensional. Could it be bigger? No, since any
arbitrary 2 x 2 matrix can be written in terms of them:

[" b]=all)+b|2)+c|3)+d|4)
c d

If the scalars a, b, ¢, d are real, we have a real four-dimensional space, if they
are complex we have a complex four-dimensional space.

Theorem 1. Any vector | V) in an n-dimensional space can be written as a linear
combination of # linearly independent vectors {1) ... |n).

The proof is as follows: if there were a vector | V) for which this were not
possible, it would join the given set of vectors and form a set of n+1 linearly
independent vectors, which is not possible in an n-dimensional space by definition.
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Definition 5. A set of n linearly independent vectors in an #-dimensional space
is called a basis.

Thus we can write, on the strength of the above

V=3 oili) (113)

i=1
where the vectors [i) form a basis.

Definition 6. The coefficients of expansion u; of a vector in terms of a linearly
independent basis (|i>) are called the components of the vector in that basis.

Theorem 2. The expansion in Eq. (1.1.3) is unique.

Suppose the expansion is not unique. We must then have a second expansion:

|V>=£: v (1.1.4)

H

Subtracting Eq. (1.1.4) from Eq. (1.1.3) (ie., multiplying the second by the
scalar ~1 and adding the two equations) we get

10>=% (v:—oi> (1.1.5)

which implies that
;=0 {1.1.8)

since the basis vectors are linearly independent and only a trivial linear reiation
between them can exist. Note that given a basis the components are unique, but if
we change the basis, the components will change. We refer to | V) as the vector in
the abstract, having an existence of its own and satisfying various relations involving
other vectors. When we choose a basis the vectors assume concrete forms in terms
of their components and the relation between vectors is satisfied by the components,
Imagine for example three arrows in the plane, 4, B, C satistying A4 + B= C according
to the laws for adding arrows. So far no basis has been chosen and we do not need
a basis to make the statement that the vectors from a closed triangle. Now we choose
a basis and write each vector in terms of the components. The components will
satisfy ;= A;+ B,, i=1, 2. If we choose a different basis, the components will change
in numerical value, but the relation between them expressing the equality of C to
the sum of the other two will still hold between the new set of components.



In the case of nonarrow vectors, adding them in terms of compenents proceeds
as in the elementary case thanks to the axioms. If

[V>=3 v|iy and (1.1.7)

|[W>=Y w;|i> then (1.1.8)

[V +HIW=3 (v, +w)li) (1.1.9)
i .

where we have used the axioms to carry out the regrouping of terms. Here is the
conclusion:

To add two vectors, add their components.

There is no reference to taking the tail of one and putting it on the tip of the
other, etc., since in general the vectors have no head or tail. Of course, if we are
dealing with arrows, we can add them either using the tail and tip routine or by
simply adding their components in a basis.

In the same way, we have:

alVy=ay) v|iy=Y avliy (1.1.10)

In other words,

To multiply a vector by a scalar, multiply all its components by the scalar,

1.2. Inner Product Spaces

The matrix and function examples must have convinced you that we can have
a vector space with no preassigned definition of length or direction for the elements.
However, we can make up quantities that have the same properties that the lengths
and angles do in the case of arrows. The first step is to define a sensible analog of
the dot product, for in the case of arrows, from the dot product

A-B=|A||B| cos 0 (1.2.1)

we can read off the length of say A as JTA[[A[ and the cosine of the angle between
two vectors as A+ B/| A|| B|. Now you might rightfuily object: how can you use the dot
product to define the length and angles, if the dot product itself requires knowledge of
the lengths and angles? The answer is this. Recall that the dot product has a second
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_pk.._l
1
- |
Vi Figure 1.2. Geometrical proof that the dot product obeys axiom (3)
—_p for an inner product. The axiom requires that the projections obey
L= Pik — Pk+ Pj=P}k.

equivalent expression in terms of the compoenents:
A-B=AB.+A,B,+A4.B, (1.2.2)

OQur goal is to define a similar formula for the general case where we do have the
notion of components in a basis. Te this end we recall the main features of the above
dot product:

]

1. A4- B=B- A (symmetry)
2. A4-A20 0 iff A=0 (positive semidefiniteness)
3. A-(bB+cCy=bA- B+cA- C (lincarity)

The linearity of the dot product is illustrated in Fig. 1.2,

We want to invent a generalization called the inner product or scalar product
between any two vectors | F) and | ). We denote it by the symbol <V|W ). It is
once again a number (generaily complex) dependent on the two vectors. We demand
that it obey the following axioms:

8 (VIW)=(W|V>* (skew-symmetry)
o {V|V>=0 0 i | V>=|0> (positive semidefiniteness)
o V(e W>+blZy)={ViaW+bZ)=al{VIW>+b{(V|Z) (lincarity in ket)

Defmition 7. A vector space with an inner product is called an inner product
space.

Notice that we have not yet given an explicit rule for actually evaluating the
scalar product, we are merely demanding that any rule we come up with must have
these properties. With a view to finding such a rule, let us familiarize ourselves with
the axioms. The first differs from the corresponding one for the dot product and
makes the inner preoduct sensitive to the order of the two factors, with the two
choices ieading to complex conjugates. In a real vector space this axioms states the
symmetry of the dot product under exchange of the two vectors. For the present,
let us note that this axiom ¢nsures that {V| ¥V is real.

The second axiom says that (V| ¥ is not just real but also positive semidefinite,
vanishing only if the vector itself does. If we are going to define the length of the
vector as the square root of its inner product with jtself (as in the dot product) this
quantity had better be real and positive for all nonzero vectors.



The last axiom expresses the linearity of the inner product when a linear super-
position &) W+ b|Z> =iaW+bZ> appears as the second vector in the scalar prod-
uct. We have discussed its validity for the arrows case (Fig. 1.2).

What if the first factor in the product is a linear superposition, i.e., what is
{aW+bZ|V)? This is determined by the first axiom;

aW+bZ|Vy={V|aW+bZ)*
=(a{VIW+b{V|Z))*
=a*(V|W>*+b*(V|Z>*

g =a*{WV>+b*{Z)V> (1.2.3)
which expresses the antilinearity of the inner product with respect to the first factor
in the inner product. In other words, the inner product of a linear superposition
with another vector is the corresponding superposition of inner products if the super-
position occurs in the second factor, while it is the superposition with all coefficients
conjugated if the superposition occurs in the first factor. This asymmetry, unfamiliar
in real vector spaces, is here to stay and you will get used to it as you go along.

Let us continue with inner products. Even though we are trying to shed the

restricted notion of a vector as an arrow and secking a corresponding generalization
of the dot product, we still use some of the same terminology.

Definition 8. We say that two vectors are orthogonal or perpendicular if their
inner product vanishes.

Definition 9. We will refer to (V| V> =| V| as the norm or length of the vector.
A normalized vector has unit norm.

Definition 10. A sel of basis vectors all of unit norm, which are pairwise ortho-
gonal will be called an orthonormal basis.

We will alse frequently refer to the inner or scalar product as the dot product.
We are now ready to obtain a concrete formula for the inner product in terms
of the components. Given | V) and | W
Vo= Z iy

W= w5
J
we follow the axioms obeyed by the inner product to obtain:

KIW> =3 Y ol wilj) (1.2.4)
[}

To go any further we have to know {{| />, the inner product between basis vectors.
That depends on the details of the basis vectors and all we know for sure is that
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they are lincarly independent. This situation exists for arrows as well. Consider a
two-dimensional problem where the basis vectors are two linearly independent but
nonperpendicular vectors. If we write all vectors in terms of this basis, the dot
product of any two of them will likewise be a double sum with four terms (determined
by the four possible dot products between the basis vectors) as well as the vector
components. However, if we use an orthonormal basis such as i, j, only diagonal
terms like ¢i[ > will survive and we will get the familiar result 4- B=A,B,+ A, B,
depending only on the components.
For the more general nonarrow case, we invoke Theorem 3.

Theorem 3 (Gram-Schmidt). Given a linearly independent basis we can form
linear combinations of the basis vectors to obtain an orthonormal basis.

Postponing the proof for a moment, let us assume that the procedure has been
implemented and that the current basis is orthonormal:

{1 fori=j
1 = =0
i {0 forij °

where 8 is called the Kronecker delta symbol. Feeding this into Eq. (1.2.4) we find
the double sum collapses to a single one due to the Kronecker delta, to give

CVIW> =% vtw (1.2.5)

This is the form of the inner product we will use from now on.

You can now appreciate the first axiom; but for the complex conjugation of
the components of the first vector, {¥| V) would not even be real, not to mention
positive. But now it is given by

PVY=Y |y 20 (1.2.6)

and vanishes only for the null vector. This makes it sensible to refer to (V|V} as
the length or norm squared of a vector.

Consider Eq. (1.2.5). Since the vector V) is uniquely specified by its compo-
nents in a given basis, we may, in this basis, write it as a column vector:

)]
Us;
[F>—] : in this basis (1.2.7)



Likewise

Wi
Ws

[WH—y ¢ in this basis (1.2.8)
W,

The inner product {V| W is given by the matrix product of the transpose conjugate
of the column vector representing | ) with the column vector representing | W)

W)
w2
KVIWy=[vF,v¥,.. ., 08| : (1.2.9)

Wn

1.3. Dual Spaces and the Dirac Notation

There is a technical point here. The inner product is a number we are trying to
generate from two kets | V) and | W), which are both represented by column vectors
in some basis. Now there is no way to make a number out of two columns by direct
matrix multiplication, but there is a way to make a number by matrix multiplication
of a row times a column. Our trick for producing a number out of two columns has
been to associate a unique row vector with one column (its transpose conjugate)
and form its matrix product with the column representing the other, This has the
feature that the answer depends on which of the two vectors we are going to convert
to the row, the two choices ((V|W> and {W|¥V}) leading to answers related by
complex conjugation.

But one can also take the following alternate view. Column vectors are concrete
manifestations of an abstract vector | V) or ket in a basis. We can also work back-
ward and go from the column vectors to the abstract kets. But then it is similarly
possible to work backward and associate with each row vecror an abstract object
{W|, called bra-W. Now we can name the bras as we want but let us do the following.
Associated with every ket | V) is a column vector. Let us take its adjoint, or transpose
conjugate, and form a row vector. The abstract bra associated with this will bear
the same label, i.e., it will be called {¥}. Thus there are two vector spaces, the space
of kets and a dual space of bras, with a ket for every bra and vice versa (the
components being related by the adjoint operation). Inner products are really defined
only between bras and kets and hence from clemenis of two distinct but related
vector spaces. There is a basis of vectors |i> for expanding kets and a similar basis
¢i| for expanding bras. The basis ket |#> is represented in the basis we are using by
a column vector with all zeros except for a 1 in the ith row, while the basis bra {i|
is a row vector with all zeros except for a 1 in the ith column.

11
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All this may be summarized as follows:

4]
7]
X IR R 17 P e ¢ 4 (1.3.1)

Up

where «» means “within a basis.”

There is, however, nothing wrong with the first viewpoint of associating a scalar
product with a pair of columns or kets {making no reference to another dual space)
and living with the asymmetry between the first and second vector in the inner
product {which one to transpose conjugate?}. If you found the above discussion
heavy going, you can temporarily ignore it. The only thing you must remember is
that in the case of a general nonarrow vector space:

e Vectors can still be assigned components in some orthonormal basis, just as with
arrows, but these may be complex.

# The inner product of any two vectors is given in terms of these components by
Eq. (1.2.5). This product obeys all the axioms.

1.3.1, Expansion of Yectors in an Orthonormal Basis

Suppose we wish to expand a vector | F) in an orthonormal basis. To find the
components that po into the expansion we proceed as follows. We take the dot
product of both sides of the assumed expansion with | > : (or {j]| if you are a purist)

V=X ul (1.3.2)

GIVy=Y vl (1.3.3)
i 8

=y, (1.3.4)

1.¢., to find the jth component of a vector we take the dot product with the jth unit
vector, gxactly as with arrows. Using this result we may write

ST
[P>=T 1<V 1<§>ZEZ“X‘]Q (13.5)

Let us make sure the basis vectors look as they should. If we set | V> =];> in Eq.
(1.3.5), we find the correct answer: the ith component of the jth basis vector is ;.
Thus for example the column representing basis vector number 4 will have a 1 in
the 4th row and zero everywhere clse. The abstract relation

(Vo=2uld (1.3.6)



becomes in this basis

Uy 1 0] 0
25} 0 1 0

=t : + v, 0+ Uy : (137)
v, 0 0 1

1.3.2. Adjoint Operation

We have seen that we may pass from the column representing a ket to the
row representing the corresponding bra by the adjoint operation, i.e., transpose
conjugation. Let us now ask: if (V] is the bra corresponding to the ket |V what
bra corresponds to | V> where a is some scalar? By going to any basis it is readily
found that

avy
auv;
alVy—| o | [a*of, a*vf, . . ., a*v}] = (V]a* (1.3.8)

auvy,

It is customary to write ¢| ¥y as [a} > and the corresponding bra as {a¥|. What
we have found is that

fa s>
gV =(V|a* (1.3.9)

Since the relation between bras and kets is linear we can say that if we have an
equation among kets such as

aVy=oW+cZ>+--- (1.3.10)
this implies another one among the corresponding bras:
(Vla*= (Wb +{Z]c*+- - - (1.3.11)

The two equations above are said to be adjoints of each other. Just as any equation
involving complex numbers implies another obtained by taking the complex conju-
gates of both sides, an equation between (bras) kets implies another one between
(kets) bras. If you think in a basis, you will see that this follows simply from the
fact that if two columns are equal, so are their transpose conjugates.

Here is the rule for taking the adjoint:

13

MATHEMATICAL
INTRODUCTION



14
CHAPTER 1

To take the adjeint of a linear equation relating kets (bras), replace every ket
(bra) by its bra (ket} and complex conjugate all coefficients.

We can extend this rule as follows. Suppose we have an expansion for a vector:

(V=2 vl (1.3.12)

in terms of basis vectors. The adjoint is

V1= lot

Recalling that o,= {i| V> and vf = {V|i), it follows that the adjoint of

V=3 1DV (1.3.13)
i=1

V=% K (13.14)
i=1

from which comes the rule:

To take the adjoint of an equation involving bras and kets and coefficients,
reverse the order of all factors, exchanging bras and kets and complex conjugating
all coefficients.

Gram~Schmidt Theorem

Let us now take up the Gram-Schmidt procedure for converting a linearly
independent basis into an orthonormal one. The basic idea can be seen by a simple
example. Imagine the two-dimensional space of arrows in a plane. Let us take two
nonparallel vectors, which qualify as a basis. To get an orthonormal basis out of
these, we do the following:

e Rescale the first by its own length, so it becomes a unit vector. This will be the
first basis vector.

o Subtract from the second vector its projection along the first, leaving behind only
the part perpendicular to the first. (Such a part will remain since by assumption
the vectors are nonparallel.)

# Rescale the left over picce by its own length. We now have the second basis vector:
it is orthogonal to the first and of unit length.

This simple example tells the whole story behind this procedure, which will now
be discussed in gencral terms in the Dirac notation.



F Let |I}, |II},... be a linearly independent basis. The first vector of the
orthonormal basis will be

|1>=% where |I|=./<I|I>

Clearly

Iry _

1
|1

A=

As for the second vector in the basis, consider
(2 =1 = [ 1X1|IT)

which is | /) minus the part pointing along the first unit vector. (Think of the arrow
example as you read on.) Not surprisingly it is orthogonal to the latter:

' U2 =T — <KHIXIIT ) =0

We now divide |2’ by its norm to get |2) which will be orthogonal to the first and
normalized to unity. Finally, consider

137 =115 — 1N HT) — 25210

which is orthogonal to both |1 and |2). Dividing by its norm we get |3}, the third
member of the orthogonal basis. There is nothing new with the generation of the
rest of the basis.

Where did we use the linear independence of the original basis? What if we had
started with a linearly dependent basis? Then at some point a vector like |2") or [3")
would have vanished, putting a stop to the whole procedure. On the other hand,
linear independence will assure us that such a thing will never happen since it amounts
to having a nontrivial linear combination of linearly independent vectors that adds
up the null vector. (Go back to the equations for |2') or |{3') and satisfy yourself
that these are lincar combinations of the old basis vectors.)

Exercise 1.3.1. Form an orthonormal basis in two dimensions starting with A=3i+4f
and B=2i—6j. Can you generate another orthonormal basis starting with these two vectors?
If so0, produce another.
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Exercise 1.3.2. Show how to go from the basis

3 0 1)
1y=10 =1 UITy=12
0 2 5
to the orthonormal basis

I 0 0
>= 0:| |2>={1/\/§} |3>={—2/\/§}
0 2/5 1/3/5
When we first learn about dimensionality, we associate it with the number of
perpendicular directions. In this chapter we defined it in terms of the maximum

number of linearly independent vectors. The following theorem connects the two
definitions.

Theorem 4. The dimensionality of a space equals #, , the maximum number of
mutuaily orthogonal vectors in it,

To show this, first note that any mutually orthogonal set is also linearly indepen-
dent. Suppose we had a linear combination of orthogonal vectors adding up to
zero. By taking the dot product of both sides with any one member and using the
orthogonality we can show that the coefficient multiplying that vector had to vanish,
This can clearly be done for all the coefficients, showing the linear combination is
trivial,

Now n; can only be equal to, greater than or lesser than n, the dimensicnality
of the space. The Gram-Schmidt procedure eliminates the last case by explicit con-
struction, while the linear independence of the perpendicular vectors rules out the
penultimate option.

Schwarz and Triangle Inequalities
Two powerful theorems apply to any inner product space obeying our axioms;

Theorem 5. The Schwarz Inequality

KW < VW) (1.3.13)
Theorem 6, The Triangle Inequality
[V+W|<|V]+|W]| (1.3.16)

The proof of the first will be provided so you can get used to working with bras
and kets. The second will be left as an exercise.



Before proving anything, note that the results are obviously true for arrows:
the Schwarz inequality says that the dot product of two vectors cannot exceed the
product of their lengths and the triangle inequality says that the length of a sum
cannot exceed the sum of the lengths. This is an example which illustrates the merits
of thinking of abstract vectors as arrows and guessing what properties they might
share with arrows. The proof will of course have to rely on just the axioms.

To prove the Schwarz inequality, consider axiom <Z|Z) >0 applied to

v

=1V w 1.3.17
1Z>=\V> WP W ( )
We get
wiv> WV
Zy=- w|v— w
21Z>=< WP I WP N
— vy - WV WY
d 1w
LD XKW VWIS
|w*
=0 (1.3.18)

where we have used the antilinearity of the inner product with respect to the bra.
Using

KW\ VY*=VIW)
we find

WV HVIW)

VVy= Wi

(1.3.19)

Cross-multiplying by | W|* and taking square roots, the result follows.

Exercise 1.3.3.  'When will this equality be satisfied? Does this agree with your experience
with arrows?

Exercise 1.3.4. Prove the triangle inequality starting with |V+ W|% You must use
Re{V|W) <|{V| W)} and the Schwarz inequality. Show that the final inequality becomes an
equality only if | ) =a| W) where a is a real positive scalar.

1.4. Subspaces

Definition 11. Given a vector space V, a subset of its elements that form a
vector space among themselves] is called a subspace. We will denote a particular
subspace i of dimensionality »; by V}'.

% Vector addition and scalar multiplication are defined the same way in the subspace as in V.

17

MATHEMATICAL
INTRODUCTION



18
CHAPTER |

Example 1.4.1. In the space V*(R), the following are some examples of sub-
spaces: (a) all vectors along the x axis, the space V,!; (b) all vectors along the y
axis, the space V, ; (c) all vectors in the x —y plane, the space V72,. Notice that all !
subspaces contain the null vector and that each vector is accompanied by its inverse
to fulfill axioms for a vector space. Thus the set of all vectors along the positive x
axis alone do not form a vector space. a

Definition 12. Given two subspaces V' and VJ%, we define their sum
V@ V= Vi* as the set containing (1) all elements of V}, (2) all elements of
V}¥, (3) all possible linear combinations of the above. But for the elements (3),
closure would be lost.

Example 1.4.2. 1If, for example, V@V, contained only vectors along the x-
and y axes, we could, by adding two elements, one from each direction, generate
one along neither. On the other hand, if we also included all linear combinations,
we would get the correct answer, V@V, =V}, O

Exercise 1.4.1.* In a space V", prove that the set of all vectors {|V'.),|V3i),...},
orthogonal to any | V) s 0), form a subspace V*~'.

Exercise 1.4.2. Suppose V" and V;? are two subspaces such that any element of V, is
orthogonal to any element of V,. Show that the dimensionality of V,®V, is n, +n,. (Hint:
Theorem 4.)

1.5. Linear Operators

An operator Q is an instruction for transforming any given vector | V') into
another, | V). The action of the operator is represented as follows:

QVr={v"> (1.5.1)

One says that the operator Q has transformed the ket | V') into the ket | V). Wej
will restrict our attention throughout to operators Q that do not take us out of the‘
vector space, i.e., if | V) is an element of a space V, so is | V'>=Q| V).

Operators can also act on bras:
VQ=<V" (1.5.2)

We will only be concerned with linear operators, i.e., ones that obey the following
rules:

Qa|V)>=aQ|V;) (1.5.3a)
Q{a|Vy+BIVp} =aQiV,y+BQIV;> (1.5.3v)
ViaQ={V|Qa (1.5.4a)

(Vila + <V B)Q2=alVi|Q+ B{V;IQ (1.5.4b)



l R[12)+13)] 12) +13)

Figure 13, Action of the operator R(irxi). Note that
R[|2>+]3)>]=R|2>+ R}3) as expected of a linear operator. (We
will often refer to R(3xi) as R if no confusion is likely.) X

Example 1.5.1. The simplest operator is the identity operator, I, which carries
the instruction:

I—-Leave the vector alone!

Thus,

N\vy=|V) forallkets|V) (1.5.5)
and
P (V|I=(V] forallbras (V| (1.5.6)

We next pass on to a more interesting operator on V>(R):
R(3mi)—Rotate vector by 37 about the unit vector i

[More generally, R(0) stands for a rotation by an angle 6 =|0| about the axis parallel
to the unit vector 6=0/6.] Let us consider the action of this operator on the three
unit vectors i, j, and k, which in our notation will be denoted by |1), |2), and |3)
(see Fig. 1.3). From the figure it is clear that

RGri)| 1) =1} (1.5.7a)
R(;mi)|2)=13) (1.5.7b)
RG7i)|3)y=—[2) (1.5.7¢)

early R(37i) is linear. For instance, it is clear from the same figure that
R[12)+[3>]=RI2)+ R|3). O

The nice feature of linear operators is that once their action on the basis vectors
is known, their action on any vector in the space is determined. If

Qliy=1i"
for a basis [1), [2),...,|n) in V", then for any (V) =Y v;|i)

i’ QY=Y Quliy=Y, vQli>=Y, vli’) (1.5.8)
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This is the case in the example Q= R(3ri). If
[V>=0v1|1>+ 052> 4+ 13]3)
is any vector, then
RIV>=0,R|1>+0R|2) + 03R|3) =0y 1) +15)3) —v5]2)

The product of two operators stands for the instruction that the instructiont
corresponding to the two operators be carried out in sequence

AQIVY=AQV))=AIQV> (1.5.9)

where |QV > is the ket obtained by the action of Q on | V). The order of the operators
in a product is very important: in general,

QA-AQ=[Q, A]

called the commutator of Q and A isn’t zero. For example R(37i) and R(37j) do
not commute, i.c., their commutator is nonzero.
Two useful identities involving commutators are

[Q, AO]=A[Q, 6]+[Q, A]O (1.5.10)
[AQ, B]=A[Q, 0] +[A, 6]Q (1.5.11)
Notice that apart from the emphasis on ordering, these rules resemble the chain rule
in calculus for the derivative of a product.
The inverse of Q, denoted by Q' satisfies]
QO '=Q7'Q=1 (1.5.12)
Not every operator has an inverse. The condition for the existence of the inverse is
given in Appendix A.l. The operator R(37i) has an inverse: it is R(—37xi). The
inverse of a product of operators is the product of the inverses in reverse:
QA '=AT'Q7! (1.5.13)

for only then do we have

(QANQA) '=(QA)AT'QT)=QAAT'Q'=QQ =1

1.6. Matrix Elements of Linear Operators

We are now accustomed to the idea of an abstract vector being represented in
a basis by an n-tuple of numbers, called its components, in terms of which all vector

1 In V*(C) with n finite, Q 'Q=17< QQ"'=1I Prove this using the ideas introduced toward the end of
Theorem A.1.1., Appendix A.l.



operations can be carried out. We shall now see that in the same manner a linear
operator can be represented in a basis by a set of n* numbers, written as an nxn
matrix, and called its matrix elements in that basis. Although the matrix elements,
just like the vector components, are basis dependent, they facilitate the computation
of all basis-independent quantities, by rendering the abstract operator more tangible.

Our starting point is the observation made earlier, that the action of a linear
operator is fully specified by its action on the basis vectors. If the basis vectors suffer
a change

Qliy=1i">

(where |i") is known), then any vector in this space undergoes a change that is readily
calculable:

QVy=QY uld=% 0.Qliy=F ulli"

When we say |i") is known, we mean that its components in the original basis
Gl =JIQH=Q; (1.6.1)
are known. The #* numbers, Q,, are the matrix elements of Q in this basis. If
QVi>=\v"

then the components of the transformed ket | V) are expressable in terms of the Q;
and the components of |V ):

ui=VH=aQlVy= <iIQ<Z vj|j>)

=¥ 4,i1Q1)>

J

Equation (1.6.2) can be cast in matrix form:

o] [UQIY QP2 - QT [o
U:2 — <2|Q|1> : U:z (1.6.3)
u] Laony - ¢l Qin ||.on

A mnemonic: the elements of the first column are simply the components of the first
transformed basis vector |1'>=Q|1) in the given basis. Likewise, the elements of the
jth column represent the image of the jth basis vector after Q acts on it.
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Convince yourself that the same matrix Q; acting to the Jeft on the row vector
corresponding to any {v'| gives the row vector corresponding to (v”] ={v'|Q.

Example 1.6.1. Combining our mnemonic with the fact that the operator R(37i),
has the following effect on the basis vectors:

RGrI1y=|1)
RGmi)2)=]3)
RGmi)|3>=—2)

we can write down the matrix that represents it in the |1), |2), |3) basis:

10 0
RGri)=|0 0 -1 (1.64)
01 0

|
For instance, the —1 in the third column tells us that R rotates |3) into —|2). One

may also ignore the mnemonic altogether and simply use the definition R;= {i|R|;)

to compute the matrix. D1
1
'\

Exercise 1.6.1. An operator Q is given by the matrix
001
1 00
010
What is its action?

Let us now consider certain specific operators and see how they appear in matrix
form.
(1) The Identity Operator I.

L=Cil11j>=<ilj>=8, (169)

Thus / is represented by a diagonal matrix with 1’s along the diagonal. You should
verify that our mnemonic gives the same result.

(2) The Projection Operators. Let us first get acquainted with projection opera-
tors. Consider the expansion of an arbitrary ket | V") in a basis:

Vy= 5 15V



In terms of the objects |i)<i|, which are linear operators, and which, by definition,
act on | V> to give |i)<i| V), we may write the above as

|V>=('§ |i><i|)| V> (16.6)

Since Eq. (1.6.6) is true for all |V}, the object in the brackets must be identified
with the identity (operator)

1= 3 lixil =

1

P, (1.6.7)
i=1

14

The object P;=|i)<i| is called the projection operator for the ket |i). Equation (1.6.7),

which is called the completeness relation, expresses the identity as a sum over projec-

tion operators and will be invaluable to us. (If you think that any time spent on the

identity, which seems to do nothing, is a waste of time, just wait and see.)
Consider

PAVO=1DVY=]Dv (1.6.8)

Clearly P, is linear. Notice that whatever | V') is, ;| V) is a multiple of |7) with
a coefficient (v;) which is the component of | V') along |i>. Since PP; projects out the
component of any ket | V) along the direction |i), it is called a projection operator.
The completeness relation, Eq. (1.6.7), says that the sum of the projections of a
vector along all the n directions equals the vector itself. Projection operators can
also act on bras in the same way:

VIP= Vi< = vii| (1.6.9)
* Projection operators corresponding to the basis vectors obey
PR, =101/ =8, P, (1.6.10)

This equation tells us that (1) once P; projects out the part of | V) along |#), further
applications of P; make no difference; and (2) the subsequent application of P,(j#1)
will result in zero, since a vector entirely along |i) cannot have a projection along a
perpendicular direction {).
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Figure 1.4. P, and P, are polarizers placed in the way of a beam traveling along the z axis. The action
of the polarizers on the electric field E obeys the law of combination of projection operators:
P.P,=5,P,.

The following example from optics may throw some light on the discussion.
Consider a beam of light traveling along the z axis and polarized in the x—y plane
at an angle 6 with respect to the y axis (see Fig. 1.4). If a polarizer P,, that only
admits light polarized along the y axis, is placed in the way, the projection E cos §
along the y axis is transmitted. An additional polarizer P, placed in the way has no
further effect on the beam. We may equate the action of the polarizer to that of a
projection operator [P, that acts on the electric field vector E. If P, is followed by a
polarizer P, the beam is completely blocked. Thus the polarizers obey the equation
P,P;= 6, P; expected of projection operators.

Let us next turn to the matrix elements of P;. There are two approaches. The
first one, somewhat indirect, gives us a feeling for what kind of an object |i)(i] is.,
We know

<

| <

and

il < [0,0,...,1,0,0,...,0]



so that
[0 [0 0]
0
: 0
lix<il = | 1][0,0,...,1,0,...,0]={: 1 (1.6.11)
0 0
[ 0] L0 0

by the rules of matrix multiplication. Whereas (V|F’'>=(lxn matrix) x
(nx 1 matrix) = (1 x 1 matrix) is a scalar, | V' >{V'| =(n x 1 matrix) X (1 X n matrix) =
(n xn matrix) is an operator. The inner product {V| V") represents a bra and ket
which have found each other, while |V )<{¥V"|, sometimes called the outer product,
has the two factors looking the other way for a bra or a ket to dot with,

The more direct approach to the matrix elements gives

(Pi= <kliyill) = 6ki6u= 61 (1.6.12)

which is of course identical to Eq. (1.6.11). The same result also follows from mne-
monic. Each projection operator has only one nonvanishing matrix element, a 1 at
the ith element on the diagonal. The completeness relation, Eq. (1.6.7), says that
when all the P, are added, the diagonal fills out to give the identity. If we form the
sum over just some of the projection operators, we get the operator which projects
a given vector into the subspace spanned by just the corresponding basis vectors.

Matrices Corresponding to Products of Operators

Consider next the matrices representing a product of operators. These are related
to the matrices representing the individual operators by the application of Eq. (1.6.7):

(QA)y= QAL = QA

=Y QKA =Y Qu Ay (1.6.13)
k k

Thus the matrix representing the product of operators is the product of the matrices
representing the factors.

The Adjoint of an Operator
Recall that given a ket a| V) =|a V') the corresponding bra is

{aV|=<(V|a* (andnot{V|a)

25

MATHEMATICAL
INTRODUCTION



26
CHAPTER |

In the same way, given a ket

QV>=QV>
the corresponding bra is

QY| =0 (1.6.14)
which defines the operator Q'. One may state this equation in words: if Q turns a
ket |V to | V'), then Q' turns the bra (V} into {¥V’|. Just as a and a*, | V) and

(V] are related but distinct objects, so are Q and Q. The relation between Q, and
Q' called the adjoint of Q or “omega dagger,” is best seen in a basis:

Q=<1 7> =<Qilj>
= J1Qi> * = {j1Qli*
$O
Ql=Qx (1.6.15)
In other words, the matrix representing Q' is the transpose conjugate of the matrix
representing Q. (Recall that the row vector representing { V| is the transpose conju-
gate of the column vector representing | V). In a given basis, the adjoint operation is
the same as taking the transpose conjugate.)
The adjoint of a product is the product of the adjoints in reverse:
QA =ATQ! (1.6.16)
To prove this we consider (QAV|. First we treat QA as one operator and get
QA ={@A) V| ={PI(QA)
Next we treat (A V') as just another vector, and write
(QAV|=L(QAV)]| =LAV |Q
We next pull out A, pushing Q' further out:
AVIQT=(VIATQ!
Comparing this result with the one obtained a few lines above, we get the desired

result.
Consider now an equation consisting of kets, scalars, and operators, such as

a1| V1> =a2| V2>+a3| V3><V4‘ V5> +a4QA| V6> (16173.)
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In the last term we can replace (QAV4| by
Vel (QA)' =T A'Q!
so that finally we have the adjoint of Eq. (1.6.17a):
Nlat=Valak + VS| V) Vilat + (Ve A'Q ak (1.6.17b)

The final rule for taking the adjoint of the most general equation we will ever
encounter is this:

When a product of operators, bras, kets, and explicit numerical coefficients is
encountered, reverse the order of all factors and make the substitutions Q< Q',
> <, aea®

(Of course, there is no real need to reverse the location of the scalars @ except in
the interest of uniformity.)

Hermitian, Anti-Hermitian, and Unitary Operators

We now turn our attention to certain special classes of operators that will play
a major role in quantum mechanics.

Definition 13. An operator Q is Hermitian if Q'=Q.
Definition 14. An operator Q is anti-Hermitian if Q' =-Q.

The adjoint is to an operator what the complex conjugate is to numbers. Hermitian
and anti-Hermitian operators are like pure real and pure imaginary numbers. Just
as every number may be decomposed into a sum of pure real and pure imaginary

parts,

a+a* a-a*

2 2

we can decompose every operator into its Hermitian and anti-Hermitian parts:

_Q+d;Q—Q*
2 2

Q

(1.6.18)

Exercise 1.6.2.* Given Q and A are Hermitian what can you say about (1) QA; (2)
QA+AQ; (3) [Q, A]; and (4) [[Q, A]?
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Definition 15. An operator U is unitary if
uUt=1 (1.6.19)

This equation tells us that U and U' are inverses of each other. Consequently,
from Eq. (1.5.12),

U'u=1 (1.6.20)

Following the analogy between operators and numbers, unitary operators are
like complex numbers of unit modulus, u=¢". Just as u*u=1, so is U'u=1

Exercise 1.6.3.* Show that a product of unitary operators is unitary.

Theorem 7. Unitary operators preserve the inner product between the vectors

they act on.
Proof. Let
[Vi>=UV
and
[Vay=UlV2)
Then

VAV =UV{UVy)

=W UUI VDY = Vol Vi) (1.6.21) |

(QE.D)

Unitary operators are the generalizations of rotation operators from V>(R) to |
V*(C), for just like rotation operators in three dimensions, they preserve the lengths
of vectors and their dot products. In fact, on a real vector space, the unitarity
condition becomes U™'=U" (T means transpose), which defines an orthogonal or
rotation matrix. [R(37i) is an example.] 1

Theorem 8. If one treats the columns of an » X » unitary matrix as components
of n vectors, these vectors are orthonormal. In the same way, the rows may be
interpreted as components of # orthonormal vectors. i

Proof 1. According to our mnemonic, the jth column of the matrix representing
U is the image of the jth basis vector after U acts on it. Since U preserves inner
products, the rotated set of vectors is also orthonormal. Consider next the rows. We
now use the fact that U' is also a rotation. (How else can it neutralize U to give
U'U=1?) Since the rows of U are the columns of U’ (but for an overall complex



conjugation which does not affect the question of orthonormality), the result we
ready have for the columns of a unitary matrix tells us the rows of U are
rthonormal.

Proof 2. Since U'U=1,
8y=ilIjy= U UL
' =Y. I Uk<KIUL
k
=Y UhUy=Y UtUy (1.6.22)
k k
which proves the theorem for the columns. A similar result for the rows follows if
we start with the equation UU'=1. Q.E.D.
Note that UTU=1 and UU" =1 are not independent conditions.
Exercise 1.6.4.* Tt is assumed that you know (1) what a determinant is, (2) that det Q"=

det Q (7 denotes transpose), (3) that the determinant of a product of matrices is the product
of the determinants. [If you do not, verify these properties for a two-dimensional case

o-(; %)

Yy 0
with det Q= (a8 — 7).] Prove that the determinant of a unitary matrix is a complex number
of unit modulus.

Exercise 1.6.5.* Verify that R(G mi) is unitary (orthogonal) by examining its matrix.

Exercise 1.6.6. Verify that the following matrices are unitary:

L[l z] 1[]+i l—i:I
2720 1 2[1-i 1+
Verify that the determinant is of the form ¢ in each case. Are any of the above matrices
Hermitian?
'1.7. Active and Passive Transformations
Suppose we subject all the vectors | V) in a space to a unitary transformation
[VS=U|V> (1.7.1)

Under this transformation, the matrix elements of any operator Q are modified as
_follows:

l VIQUV S UVQIUV Y=<V |U'QU| V> (1.7.2)
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It is clear that the same change would be effected if we left the vectors alone an
subjected all operators to the change

Q-uU'QU (1.7.3)

The first case is called an active transformation and the second a passive transforma-
tion. The present nomenclature is in reference to the vectors: they are affected in an
active transformation and left alone in the passive case. The situation is exactly the
opposite from the point of view of the operators.

Later we will see that the physics in quantum theory lies in the matrix elements
of operators, and that active and passive transformations provide us with two equiva-
lent ways of describing the same physical transformation.

Exercise 1.7.1.* The trace of a matrix is defined to be the sum of its diagonal matrix
elements

TrQ=Y Q,

Show that

(1) Tr(QA)=Tr(AQ)

(2) Tr(QAB)=Tr(ABQ)=Tr(6QA) (The permutations are cyclic).

(3) The trace of an operator is unaffected by a unitary change of basis |i>— U{i)>. [Equiva-
lently, show Tr Q=Tr(U'QU).]

Exercise 1.7.2. Show that the determinant of a matrix is unaffected by a unitary change
of basis. [Equivalently show det Q=det(U'QU).]

1.8. The Eigenvalue Problem
Consider some linear operator € acting on an arbitrary nonzero ket |V):
QVY=V" (1.8.1)

Unless the operator happens to be a trivial one, such as the identity or its multiple,
the ket will suffer a nontrivial change, i.e., | V') will not be simply related to | ¥).
So much for an arbitrary ket. Each operator, however, has certain kets of its own,
called its eigenkets, on which its action is simply that of rescaling:

AV =0V (1.8.2)

Equation (1.8.2) is an eigenvalue equation: | V) is an eigenket of Q with eigenvalue
. In this chapter we will see how, given an operator 2, one can systematically
determine all its eigenvalues and eigenvectors. How such an equation enters physics
will be illustrated by a few examples from mechanics at the end of this section, and
once we get to quantum mechanics proper, it will be eigen, eigen, eigen all the way.




Example 1.8.1. To illustrate how easy the eigenvalue problem really is, we will
begin with a case that will be completely solved: the case Q=1. Since

IV>=|V)>
for all | V>, we cohclude that

(1) the only eigenvalue of Iis 1;
(2) all vectors are its eigenvectors with this eigenvalue. d

Example 1.8.2. After this unqualified success, we are encouraged to take on a
slightly more difficult case: Q= Py, the projection operator associated with a normal-

ized ket | V). Clearly

(1) any ket ¢|V)=|a V), parallel to |V} is an eigenket with eigenvalue 1:
t PylaVy=|¥)VlaVy=al V3 VP=1-laV)

‘(2) any ket | V., ), perpendicular to | V'), is an eigenket with eigenvalue 0:
i PyIV.y=1VXXVIVi)=0=0V.)

(3) kets that are neither, i.e., kets of the form a|V)+B|V.), are simply not
eigenkets:

Pu(alV+BIV.>)=laV)>#y(alV)+BIV.i))

Since every ket in the space falls into one of the above classes, we have found
all the eigenvalues and eigenvectors. O

| Example 1.8.3. Consider now the operator RG 7). We already know that it
has one eigenket, the basis vector |1) along the x axis:

RG> =]1)

Are there others? Of course, any vector |1 along the x axis is also unaffected by
the x rotation. This is a general feature of the eigenvalue equation and reflects the

linearity of the operator:
if

QVy=0lV)

l Qa|Vy=aQ|V)=ao|V)=0walV)
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for any multiple «. Since the eigenvalue equation fixes the eigenvector only up to
an overall scale factor, we will not treat the multiples of an eigenvector as distinct
eigenvectors. With this understanding in mind, let us ask if R(G 7i) has any eigenvec-
tors besides |1). Our intuition says no, for any vector not along the x axis necessarily
gets rotated by R(37i) and cannot possibly transform into a multiple of itself. Since
every vector is either parallel to |1) or isn’t, we have fully solved the eigenvalue
problem.

The trouble with this conclusion is that it is wrong! R(37i) has two other
eigenvectors besides |1). But our intuition is not to be blamed, for these vectors are
in V*(C) and not V’(R). 1t is clear from this example that we need a reliable and
systematic method for solving the eigenvalue problem in V*(C). We now turn our
attention to this very question. 0

The Characteristic Equation and the Solution to the Eigenvalue Problem

We begin by rewriting Eq. (1.8.2) as
Q-D|V) =0 (1.8.3)
Operating both sides with (Q— )™, assuming it exists, we get
[V>=(Q-wl)”'|0) (1.84

Now, any finite operator (an operator with finite matrix elements) acting on the null

vector can only give us a null vector. It therefore seems that in asking for a nonzero

eigenvector | V'), we are trying to get something for nothing out of Eq. (1.8.4). This

is impossible. It follows that our assumption that the operator (Q—wI) ™" exists (as
a finite operator) is false. So we ask when this situation will obtain. Basic matrix :
theory tells us (see Appendix A.1) that the inverse of any matrix M is given by

. |
_lzg%];_M_ (1.8.5)

|

Now the cofactor of M is finite if M is. Thus what we need is the vanishing of the
determinant. The condition for nonzero eigenvectors is therefore

det(Q—wl)=0 (1.8.6)

This equation will determine the eigenvalues w. To find them, we project Eq. (1.8.3)
onto a basis. Dotting both sides with a basis bra (i, we get

GIQ- @Il VY=0



and upon introducing the representation of the identity [Eq. (1.6.7)], to the left of
|V, we get the following image of Eq. (1.8.3):

2 (Q— wd;)v;=0 (1.8.7)
j
Setting the determinant to zero will give us an expression of the form

Y cn™=0 (1.8.8)
Equation (1.8.8) is called the characteristic equation and

P'(w)= i ™ (1.8.9)

m=0

is called the characteristic polynomial. Although the polynomial is being determined
in a particular basis, the eigenvalues, which are its roots, are basis independent, for
they are defined by the abstract Eq. (1.8.3), which makes no reference to any basis.

Now, a fundamental result in analysis is that every nth-order polynomial has n
roots, not necessarily distinct and not necessarily real. Thus every operator in V'(C)
has n eigenvalues. Once the eigenvalues are known, the eigenvectors may be found,
at least for Hermitian and unitary operators, using a procedure illustrated by the
following example. [Operators on V"(C) that are not of the above variety may not
have n eigenvectors—see Exercise 1.8.4. Theorems 10 and 12 establish that Hermitian
and unitary operators on V"(C) will have » eigenvectors.]

Example 1.8.4. Let us use the general techniques developed above to find all
the eigenvectors and eigenvalues of R(;7i). Recall that the matrix representing it is

1 0 0
RGri)—|0 0 -1
01 0
Therefore the characteristic equation is
l-w 0 0
det(R—wl)=| 0 -0 —1|=0
0 1 —-o

ie.,

(1-w)(@*+1)=0 (1.8.10)
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with roots @ =1, +i. We know that @ =1 corresponds to |1>. Let us see this come
out of the formalism. Feeding @ =1 into Eq. (1.8.7) we find that the components
X1, X2, and x3 of the corresponding eigenvector must obey the equations

1-1 0 0l x 0 0=0
0 0—1 1|l x|=]0 —>_x2_x3=0}_>x2=x3=0
0 1 0—1]|l x5 0 Xy~ x3=0

Thus any vector of the form

X1
xi[1>e] 0
0

is acceptable, as expected. It is conventional to use the freedom in scale to normalize
the eigenvectors. Thus in this case a choice is

1
lo=1)=[1)>=|0
0

I say a choice, and not the choice, since the vector may be multiplied by a number
of modulus unity without changing the norm. There is no universally accepted con-
vention for eliminating this freedom, except perhaps to choose the vector with real
components when possible.

Note that of the three simultaneous equations above, the first is not a real
equation. In general, there will be only (n—1) LI equations. This is the reason the
norm of the vector is not fixed and, as shown in Appendix A.l, the reason the
determinant vanishes.

Consider next the equations corresponding to @ =i. The components of the
eigenvector obey the equations

(1-9)x,=0 (i.e., x;=0)
—ixy—x3=0 (i.e., x2=1ix3)
Xy—ix3=0 (i.e., xo=ix3)
Notice once again that we have only #—1 useful equations. A properly normalized

solution to the above is

|a)=l'><—*2~1/'5

1



A similar procedure yields the third eigenvector:

0

1

In the above example we have introduced a popular convention: labeling the
eigenvectors by the eigenvalue. For instance, the ket corresponding to w=w; is
labeled | = ;) or simply |w;>. This notation presumes that to each w; there is just
one vector labeled by it. Though this is not always the case, only a slight change in
this notation will be needed to cover the general case.

The phenomenon of a single eigenvalue representing more than one eigenvector
is called degeneracy and corresponds to repeated roots for the characteristic poly-
nomial. In the face of degeneracy, we need to modify not just the labeling, but also
the procedure used in the example above for finding the eigenvectors. Imagine that
instead of R(37i) we were dealing with another operator Q on V3(R) with roots ,
and w,=w;. It appears as if we can get two eigenvectors, by the method described
above, one for each distinct . How do we get a third? Or is there no third? These
questions will be answered in all generality shortly when we examine the question
of degeneracy in detail. We now turn our attention to two central theorems on
Hermitian operators. These play a vital role in quantum mechanics.

Theorem 9. The eigenvalues of a Hermitian operator are real.
Proof. Let
Qlod=o|o)d
Dot both sides with {@|:
{(w|Q|o)=awlolo) (1.8.11)
Take the adjoint to get
(o|Q'l0)=0%(v|o)
Since Q=0", this becomes
(o|Qo)=o*v]o)
Subtracting from Eq. (1.8.11)
0=(o—-ao*){ oo

o=0* Q.E.D.
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Theorem 10. To every Hermitian operator €, there exists (at least) a basis
consisting of its orthonormal eigenvectors. It is diagonal in this eigenbasis and
has its eigenvalues as its diagonal entries.

Proof. Let us start with the characteristic equation. It must have at least one
root, call it w; . Corresponding to @, there must exist at least one nonzero eigenvector
|@1). [If not, Theorem (A.1.1) would imply that (Q— w,[l) is invertible.] Consider
the subspace V7' of all vectors orthogonal to |@;). Let us choose as our basis the
vector |w;) (normalized to wunity) and any r—1 orthonormal vectors

Vi, Vi, ..., V13 in V7', In this basis Q has the following form:
w, 00 0 0 - 0
0
Qe 0 (1.8.12)
0

4
i

The first column is just the image of |w;) after Q has acted on it. Given the
first column, the first row follows from the Hermiticity of Q.
The characteristic equation now takes the form

(w, — ) - (determinant of boxed submatrix) =0

(0,— o) nil Cn®®™ = (0, — )P '(0)=0

0 §

Now the polynomial P”~' must also generate one root, w,, and a normalized
eigenvector |w,). Define the subspace V'15 of vectors in V7' orthogonal to |w,)
(and automatically to |@,)) and repeat the same procedure as before. Finally, the

matrix Q becomes, in the basis |@,), |@2), .. ., |©,),
w, 0 0 - 0
0 > 0 0
Qeo| 0 0 [OF] 0
0 0 0 W,

Since every |w,;> was chosen from a space that was orthogonal to the previous
ones, |@1), [w2), ..., |w:—1); the basis of eigenvectors is orthonormal. (Notice that
nowhere did we have to assume that the eigenvalues were all distinct.) Q.E.D.

[The analogy between real numbers and Hermitian operators is further strength-
ened by the fact that in a certain basis (of eigenvectors) the Hermitian operator can
be represented by a matrix with all real elements.]

In stating Theorem 10, it was indicated that there might exist more than one
basis of eigenvectors that diagonalized €. This happens if there is any degeneracy.
Suppose @, = w,=o. Then we have two orthonormal vectors obeying '




Qo) =o|w)
Qloy) =o0|w:)
It follows that
Qa|o>+ ploy [=aolo)+folo)=ola|o)+ flo)]

for any a and B. Since the vectors |@,)> and |w,) are orthogonal (and hence LI),
we find that there is a whole two-dimensional subspace spanned by |®,> and |w,),
the elements of which are eigenvectors of Q with eigenvalue w. One refers to this
space as an eigenspace of Q with eigenvalue w. Besides the vectors |w,) and |@,),
there exists an infinity of orthonormal pairs |1 ), |w3), obtained by a rigid rotation
of |@1), |@2), from which we may select any pair in forming the eigenbasis of Q.
In general, if an eigenvalue occurs m; times, that is, if the characteristic equation has
m; of its roots equal to some w;, there will be an eigenspace Vi from which we may
choose any m; orthonormal vectors to form the basis referred to in Theorem 10.

In the absence of degeneracy, we can prove Theorem 9 and 10 very easily. Let
us begin with two eigenvectors:

Qo) = w0 (1.8.13a)
Qoy=w,0,> (1.8.13b)
Dotting the first with {w;| and the second with {w;|, we get
(0;]Qo>=0lo|0;) (1.8.14a)
(0|Qo;>=w;{n;|0;> (1.8.14b)
Taking the adjoint of the last equation and using the Hermitian nature of Q, we get
{0;|Qlo) =0 o;lo)
Subtracting this equation from Eq. (1.8.14a), we get
O0=(wi—wf)}w)|w:) (1.8.15)
If i=j, we get, since {w;|w;>#0,

w;=0} (1.8.16)
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If i#j, we get
{wi|lw;>=0 (1.8.17)

since w;— @}=w;— ®;#0 by assumption. That the proof of orthogonality breaks
down for w,= w,is not surprising, for two vectors labeled by a degenerated eigenvalue
could be any two members of the degenerate space which need not necessarily be
orthogonal. The modification of this proof in this case of degeneracy calls for argu-
ments that are essentially the ones used in proving Theorem 10. The advantage in
the way Theorem 10 was proved first is that it suffers no modification in the degener-
ate case.

Degeneracy

We now address the question of degeneracy as promised earlier. Now, our
general analysis of Theorem 10 showed us that in the face of degeneracy, we have
not one, but an infinity of orthonormal eigenbases. Let us see through an example
how this variety manifests itself when we look for eigenvectors and how it is to be
handled.

Example 1.8.5. Consider an operator Q with matrix elements

1 01
Q|0 2 0
1 0 1
in some basis. The characteristic equation is
(w—2)’0=0

ie.,

0=0,272

The vector corresponding to @ =0 is found by the usual means to be

1
|w=O>HW

-1
The case w=2 leads to the following equations for the components of the
eigenvector:
_X1+X3=0
0=0

x,—x3=0



Now we have just one equation, instead of the two (n— 1) we have grown accustomed
to! This is a reflection of the degeneracy. For every extra appearance (besides the
first) a root makes, it takes away one equation. Thus degeneracy permits us extra
degrees of freedom besides the usual one (of normalization). The conditions

X1 = X3
x, arbitrary

define an ensemble of vectors that are perpendicular to the first, | =0), i.e., lie in
a plane perpendicular to |@ =0). This is in agreement with our expectation that a
twofold degeneracy should lead to a two-dimensional eigenspace. The freedom in x,
(or more precisely, the ratio x,/x;) corresponds to the freedom of orientation in this
plane. Let us arbitrarily choose x, =1, to get a normalized eigenvector corresponding
to w=2:

1

1
=2y <575 |
1

The third vector is now chosen to lie in this plane and to be orthogonal to the second
(being in this plane automatically makes it perpendicular to the first |@ =0)):

1

1
|o =2, second one) « P =2
1

Clearly each distinct choice of the ratio, x,/x3, gives us a distinct doublet of orthonor-
mal eigenvectors with eigenvalue2. U

Notice that in the face of degeneracy, |@,)> no longer refers to a single ket but
to a generic element of the eigenspace V5. To refer to a particular element, we must
use the symbol |w;, &), where @ labels the ket within the eigenspace. A natural
choice of the label a will be discussed shortly.

We now consider the analogs of Theorems 9 and 10 for unitary operators.

Theorem 11. The eigenvalues of a unitary operator are complex numbers of
unit modulus.

Theorem 12. The eigenvectors of a unitary operator are mutually orthogonal.
(We assume there is no degeneracy.)
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Proof of Both Theorems (assuming no degeneracy). Let
Ulw) = u;|u;y (1.8.1
and
Ul =uj|uyy (1.8.18

If we take the adjoint of the second equation and dot each side with the correspondin
side of the first equation, we get

oyl U U sy = wpu Qg
so that
(1 —wuf)ulu;y =0 (1.8.1
If i=j, we get, since (u;|u;>#0,
wuk = (1.8.204
while if 15/,
Cuilu> =0 (1.8.20
since |u,) #|u; >=u A u=uuf Fuuf=uuf #1. (QE.D)
If Uis degenerate, we can carry out an analysis parallel to that for the Hermiti
operator 2, with just one difference. Whereas in Eq. (1.8.12), the zeros of the first
row followed from the zeros of the first column and QT=Q, here they follow from

the requirement that the sum of the modulus squared of the elements in each row
adds up to 1. Since |u;| =1, all the other elements in the first row must vanish.

Diagonalization of Hermitian Matrices

Consider a Hermitian operator Q on V"(C) represented as a matrix in some
orthonormal basis |1>,...,[i),...,|n). If we trade this basis for the eigenbasis
@), ...,]0), ..., |0, the matrix representing Q will become diagonal. Now the
operator U inducing the change of basis

lo:>=Ulid (1824

is clearly unitary, for it “‘rotates” one orthonormal basis into another. (If you wis
you may apply our mnemonic to U and verify its unitary nature: its columns contain:
the components of the eigenvectors |®;) that are orthonormal.) This result is often
summarized by the statement: ‘

Every Hermitian matrix on V”(C) may be diagonalized by a unitary change of
basis.

'
'



We may restate this result in terms of passive transformations as follows:

If Q is a Hermitian matrix, there exists a unitary matrix U (built out of the
eigenvectors of Q) such that U'QU is diagonal.

Thus the problem of finding a basis that diagonalizes € is equivalent to solving
its eigenvalue problem.

Exercise 1.8.1. (1) Find the eigenvalues and normalized eigenvectors of the matrix
1 3 1
Q=0 2 0
01 4
(2) Is the matrix Hermitian? Are the eigenvectors orthogonal?

Exercise 1.8.2.* Consider the matrix

o o ©
[ R e R

(1) Is it Hermitian?
(2) Find its eigenvalues and eigenvectors.
(3) Verify that U'QuU is diagonal, U being the matrix of eigenvectors of Q.

Exercise 1.8.3.* Consider the Hermitian matrix

2 0 0
Q=-10 3 -1
0 -1 3

(1) Show that w,=w,=1; w;=2.
(2) Show that |@=2) is any vector of the form

0
1

—TS a
@a)”
—a

(3) Show that the @ =1 eigenspace contains all vectors of the form

b
1

&2y
(4

either by feeding @ =1 into the equations or by requiring that the @ =1 eigenspace be ortho-
gonal to | =2).

41

MATHEMATICAL
INTRODUCTION



42 Exercise 1.8.4. An arbitrary n x n matrix need not have n eigenvectors. Consider as an

example
1
o[} )
-1 2
(1) Show that w,=w,=3.

(2) By feeding in this value show we get only one eigenvector of the form

1 [+a:l
Qd)'*|—a

We cannot find another one that is LI.

CHAPTER 1

Exercise 1.8.5.* Consider the matrix
_[ cos 6 sin 0:|
—sinf cosé@

(1) Show that it is unitary.

(2) Show that its eigenvalues are ¢’ and e .
(3) Find the corresponding eigenvectors; show that they are orthogonal.

(4) Verify that U'QU=(diagonal matrix), where U is the matrix of eigenvectors of Q.

Exercise 1.8.6.* (1) We have seen that the determinant of a matrix is unchanged under
a Unitary change of basis. Argue now that
det Q =product of eigenvalues of Q=[] @,

i=1

for a Hermitian or unitary Q.
(2) Using the invariance of the trace under the same transformation, show that

Tr Q= Z w;

i=1

Exercise 1.8.7. By using the results on the trace and determinant from the last problem,
show that the eigenvalues of the matrix

ot

are 3 and —1. Verify this by explicit computation. Note that the Hermitian nature of the
matriX is an essential ingredient.



Exercise 1.8.8.* Consider Hermitian matrices M', M? M* M* that obey
M M +MM'=28T, ij=1,...,4
(1) Show that the eigenvalues of M‘ are £ 1. (Hint: go to the eigenbasis of M’, and use
the equation for i=j.)
(2) By considering the relation

MM'=—M’M*" fori#j

show that M’ are traceless. [Hint: Tr(4CB)=Tr(CBA).]
(3) Show that they cannot be odd-dimensional matrices.

Exercise 1.8.9. A collection of masses m,, , located at r, and rotating with angular velocity
o around a common axis has an angular momentum

1=Y ma(r, X v,)

where v, =@ Xr, is the velocity of m,. By using the identity
AXx(BxC)=B(A-C)—C(A-B)
show that each Cartesian component /; of 1 is given by

I,'=ZM,'1'(0j
J

where

Mij=z ma[riaij_ (ra)i(ra)j]

or in Dirac notation
(=M

(1) Will the angular momentum and angular velocity always be parallel?

(2) Show that the moment of inertia matrix Mj; is Hermitian.

(3) Argue now that there exist three directions for ® such that 1 and ® will be parallel.
How are these directions to be found?

(4) Consider the moment of inertia matrix of a sphere. Due to the complete symmetry
of the sphere, it is clear that every direction is its eigendirection for rotation. What does this
say about the three eigenvalues of the matrix M?

Simultaneous Diagonalization of Two Hermitian Operators
Let us consider next the question of simultaneously diagonalizing two Hermitian
operators.

Theorem 13. If Q and A are two commuting Hermitian operators, there exists
(at least) a basis of common eigenvectors that diagonalizes them both.
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Proof. Consider first the case where at least one of the operators is nondegener-
ate, i.e., to a given eigenvalue, there is just one eigenvector, up to a scale. Let us
assume Q is nondegenerate. Consider any one of its eigenvectors:

Qloy=wilw:)
AQw>=mw;Alo;)
Since [A, Q] =0,
QA|w;)=w;A|@;> (1.8.22)

ie., Alw;) is an eigenvector of Q with eigenvalue ;. Since this vector is unique up
to a scale,

Alwy=Alo) (1.8.23)

Thus |w;> is also an eigenvector of A with eigenvalue A;. Since every eigenvector of
Q is an eigenvector of A, it is evident that the basis |w;> will diagonalize both
operators. Since Q is nondegenerate, there is only one basis with this property.

What if both operators are degenerate? By ordering the basis vectors such that
the elements of each eigenspace are adjacent, we can get one of them, say €, into
the form (Theorem 10)

D

D]

Now this basis is not unique: in every eigenspace Vg =V;" corresponding to the
eigenvalue ®;, there exists an infinity of bases. Let us arbitrarily pick in Vi a set
|w;, &> where the additional label a runs from 1 to m;.

How does A appear in the basis? Although we made no special efforts to get A
into a simple form, it already has a simple form by virtue of the fact that it commutes
with Q. Let us start by mimicking the proof in the nondegenerate case:

OA|lw;, a)=AQ|w;, a>=w;A|o;, a)



However, due to the degeneracy of €2, we can only conclude that 45
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Now, since vectors from different eigenspaces are orthogonal [Eq. (1.8.15)],
{w;, BIA|@;, a>=0

if |w;, @) and |@;, ) are basis vectors such that w;# @;. Consequently, in this basis,

0
Ao

0

which is called a block diagonal matrix for obvious reasons. The block diagonal form
of A reflects the fact that when A acts on some element |w,, @) of the eigenspace
Vi, it turns it into another element of V7. Within each subspace i, A is given by
a matrix A;, which appears as a block in the equation above. Consider a matrix A;
in V{¥, It is Hermitian since A is. It can obviously be diagonalized by trading the
basis [0;, 1), |@;,2), ..., |®i, m;> in V" that we started with, for the eigenbasis of
A;. Let us make such a change of basis in each eigenspace, thereby rendering A
diagonal. Meanwhile what of Q? It remains diagonal of course, since it is indifferent
to the choice of orthonormal basis in each degenerate eigenspace. If the eigenvalues
of A;are AV A%, ..., A™ then we end up with

AP
A

Ao P ,
AP

A /(cmk)

Om

Q.E.D.
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If A is not degenerate within any given subspace, A #A{", for any k, I, and i, the
basis we end up with is unique: the freedom  gave us in each eigenspace is fully
eliminated by A. The elements of this basis may be named uniquely by the pair of
indices @ and A as |@, Ay, with A playing the role of the extra label a. If A is
degenerate within an eigenspace of Q, if say A{"”=A{®, there is a two-dimensional
eigenspace from which we can choose any two orthonormal vectors for the common
basis. It is then necessary to bring in a third operator I', that commutes with both
Q and A, and which will be nondegenerate in this subspace. In general, one can
always find, for finite n, a set of operators {Q, A, T, ...} that commute with each
other and that nail down a unique, common, eigenbasis, the elements of which may
be labeled unambiguously as |, 4, ¥, ... >. In our study of quantum mechanics it
will be assumed that such a complete set of commuting operators exists if n is infinite.

Exercise 1.8.10.* By considering the commutator, show that the following Hermitian
matrices may be simultaneously diagonalized. Find the eigenvectors common to both and
verify that under a unitary transformation to this basis, both matrices are diagonalized.

0 -1

1 01 2 1 1
Q=10 0 0| , A=|I
1 01 1 ~1 2

Since Q is degenerate and A is not, you must be prudent in deciding which matrix dictates
the choice of basis.

Example 1.8.6. We will now discuss, in some detail, the complete solution to a
problem in mechanics. It is important that you understand this example thoroughly,
for it not only illustrates the use of the mathematical techniques developed in this
chapter but also contains the main features of the central problem in quantum
mechanics.

The mechanical system in question is depicted in Fig. 1.5. The two masses m
are coupled to each other and the walls by springs of force constant k. If x, and x,
measure the displacements of the masses from their equilibrium points, these coordi-
nates obey the following equations, derived through an elementary application of
Newton’s laws:

. 2k k
x1=——x1+—x2 (18243)
m m
.k 2k
X=X —— X (1.8.24b)
m m
~ m e m v Figure 1.5. The coupled mass problem. All masses are
m, all spring constants are k, and the displacements of

Ly, Lexz the masses from equilibrium are x; and x,.



The problem is to find x,(¢) and x,(¢) given the initial-value data, which in this
case consist of the initial positions and velocities. If we restrict ourselves to the case
of zero initial velocities, our problem is to find x,(z) and x,(¢), given x,(0) and x,(0).

In what follows, we will formulate the problem in the language of linear vector
spaces and solve it using the machinery developed in this chapter. As a first step, we
rewrite Eq. (1.8.24) in matrix form:

. Q. Q
[’f‘}[ " ”}[x‘} (1.8.252)
X2 Qo Qnllx
where the elements of the Hermitian matrix Q; are
9112922=_2k/m, le=921=k/m (1825b)
We now view x; and x, as components of an abstract vector |x), and ; as the matrix
elements of a Hermitian operator Q. Since the vector |x) has two real components, it
is an element of V*(R), and Q is a Hermitian operator on V*(R). The abstract form
of Eq. (1.8.25a) is

|X(2)> =Q|x(2)> (1.8.26)

Equation (1.8.25a) is obtained by projecting Eq. (1.8.26) on the basis vectors |1),
|2), which have the following physical significance:

i o [1} - {ﬁrst mass dlsplaceq by umty} (1.8.272)
second mass undisplaced
25 o [O] - { first mass ‘undlsplaced ‘ } (1.8.27b)
1 second mass displaced by unity

An arbitrary state, in which the masses are displaced by x; and x,, is given in this

basis by
[xl:|=[1}x1 +Hx2 (1.8.28)
X2 0 1

The abstract counterpart of the above equation is
[x>=[1Dx1+|2>x, (1.8.29)

It is in this |1), |2) basis that Q is represented by the matrix appearing in Eq.
(1.8.25), with elements —2k/m, k/m, etc.

The basis |1}, [2) is very desirable physically, for the components of |x) in this
basis (x; and x;) have the simple interpretation as displacements of the masses.
However, from the standpoint of finding a mathematical solution to the initial-value
problem, it is not so desirable, for the components x; and x, obey the coupled
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differential equations (1.8.24a) and (1.8.24b). The coupling is mediated by the off-
diagonal matrix elements Q,,=Q,,=k/m.

Having identified the problem with the |1}, |2) basis, we can now see how to
get around it: we must switch to a basis in which Q is diagonal. The components of
|x> in this basis will then obey another uncoupled differential equations which may
be readily solved. Having found the solution, we can return to the physically prefer-
able |1, |2) basis. This, then, is our broad strategy and we now turn to the details.

From our study of Hermitian operators we know that the basis that diagonalizes
Q is the basis of its normalized eigenvectors. Let |I) and |II) be its eigenvectors
defined by

QI =-of|l) (1.8.30a)
QI = —wh|II) (1.8.30b)

We are departing here from our usual notation: the eigenvalue of Q is written as
— o rather than as o in anticipation of the fact that Q has eigenvalues of the form
—?, with o real. We are also using the symbols |I> and |II) to denote what should
be called | — ®?) and | — %) in our convention.

It is a simple exercise (which you should perform) to solve the eigenvalue prob-
lem of © in the |1), [2) basis (in which the matrix elements of Q are known) and

to obtain
1/2
k 11
1/2
3k 1 1
w[[=(;) , |II> HE—I—/E[—]] (1.8.3"))

If we now expand the vector |x(#)) in this new basis as
|%(6)> =1Dxi(r) + 1D xu(2) (1.8.32)
[in analogy with Eq. (1.8.29)], the components x; and xy will evolve as follows:

Ll ‘
Xn 0 -—ofllx i

|

=[ “"%"'] (1.8.33)

2
—OnuXn 1

We obtain this equation by rewriting Eq. (1.8.26) in the |[I), |II) basis in which Qw:
has its eigenvalues as the diagonal entries, and in which |x) has components x; and

|



xy. Alternately we can apply the operator

to both sides of the expansion of Eq. (1.8.32), and get
10> =1T>(% + oix;) + Iy (En + of xn) (1.8.34)

Since |I> and |II) are orthogonal, each coefhicient is zero.
The solution to the decoupled equations

#+oix=0 i=LII (1.8.35)
subject to the condition of vanishing initial velocities, is
x{t)=x,0) cos w;t, i=L1I (1.8.36)

As anticipated, the components of |x) in the |ID, |II) basis obey decoupled equations
that can be readily solved. Feeding Eq. (1.8.36) into Eq. (1.8.32) we get

[x(8)> =1>x1(0) cos @1t + | D>x;(0) cos oyt (1.8.37a)
=|I>|x(0)> cos w1t + | I x(0)> cos wyt (1.8.37b)

Equation (1.8.37) provides the explicit solution to the initial-value problem. It corre-
sponds to the following algorithm for finding |x(¢)> given |x(0)}.

Step (1). Solve the eigenvalue problem of Q.

Step (2). Find the coefficients x;(0)=<I|x(0)> and x;(0)=<II|x(0)> in the
expansion

1%(0)> =>x1(0) + [TL)xu(0)

" Step (3). Append to each coefficient x;(0) (i=1, II) a time dependence cos ;¢
to get the coefhicients in the expansion of |x(f)).
Let me now illustrate this algorithm by solving the following (general) initial-
value problem: Find the future state of the system given that at z=0 the masses are
displaced by x,(0) and x,(0).

Step (1). We can ignore this step since the eigenvalue problem has been solved
[Eq. (1.8.31)].
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Step (2).

x1(0) = Ax(O)y =15 (1, 1)[’6‘(0)}:&2@_)

2!/ x2(0) 2172

1 (1,_1)[x.(0)}=x.(0)—x2(0)

xII(O)=<H|x(O)>=W %(0) 2172

Step (3).

x1(0) +x2(0) x1(0) — x2(0)

|x(t)>=|I>—7——cos ot + |1 Ji72 cos oyt

The explicit solution above can be made even more explicit by projecting |x(¢) onto
the |1, ]2) basis to find x,(¢) and x»(¢), the displacements of the masses. We get
(feeding in the explicit formulas for oy and wy)

xi(8) = (1|x(2)>
172 12
=D WCOS[(E) t:|+ I wcos[(%) t}

m
1/2 1/2
=1 [x1(0) + x2(0)] cos {(E) tjl +i [x1(0) — x2(0)] cos [(ﬁ) til (1.8.38a)
2 m 2 m

using the fact that
A=y =1/2"?

It can likewise be shown that

1/2 1/2
xz(t)=%[x.(0)+x2(0)] cos[(%) t}—%[x.(O)—xz(O)] cos[(%) t:l (1.8.38b)

We can rewrite Eq. (1.8.38) in matrix form as

cos [(k/m)' 1]+ cos[(3k/m)"/*1] cos[(k/m)'*1]—cos[(3k/m)"/*1]

[xl(r)}= 2 2
xx(t)] | cos[(k/m)'*t] —cos[(3k/m)"’] cos[(k/m)"/*t] +cos[(3k/m)'/*1]
2 2

x [x‘(o)] (1.8.39)
XQ(O)

I
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The Propagator

There are two remarkable features in Eq. (1.8.39):

(1) The final-state vector is obtained from the initial-state vector upon multiplication
by a matrix.

(2) This matrix is independent of the initial state. We call this matrix the propagator.
Finding the propagator is tantamount to finding the complete solution to the
problem, for given any other initial state with displacements %,(0) and x,(0), we
get %,(¢) and %,(¢r) by applying the same matrix to the initial-state vector.

We may view Eq. (1.8.39) as the image in the |1), |2) basis of the abstract
relation

|x(2)> = U(£)|x(0)> (1.8.40)

By comparing this equation with Eq. (1.8.37b), we find the abstract representation
of U:

U(r) =1)<]] cos @yt + |I1>{II} cos wn ¢ (1.8.41a)
I
=Y |i<i| cos w;t (1.8.41b)

i=1

You may easily convince yourself that if we take the matrix elements of this operator
in the |1}, {2) basis, we regain the matrix appearing in Eq. (1.8.39). For example

Un=1015

1/2 1/2
=1 {II><II cos [(Q t}+|II><IIl cos[(yf) t:|}| 1
m m
k 172 % 12
=<lll><Il1>cos[(4> t}+<1|n><n|1>cos[(#> ,}
m m
o) el
=—qcos{|{—]| ¢t|+cos||—]| ¢
2 m m

Notice that U(¢) [Eq. (1.8.41)] is determined completely by the eigenvectors
and eigenvalues of Q. We may then restate our earlier algorithm as follows. To solve
the equation

|%5>=Q x>
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(1) Solve the eigenvalue problem of Q.
(2) Construct the propagator U in terms of the eigenvalues and eigenvectors.

(3) 1x(1)> = U(1)] x(0)>.

The Normal Modes

There are two initial states |x(0))> for which the time evolution is particularly
simple. Not surprisingly, these are the eigenkets |I) and |II>. Suppose we have
|x(0)> =|I>. Then the state at time ¢ is

[1(6)> = U(H)IT>
=(|I><I| cos w1t + |1 ){II| cos o ?)|I)
=|I) cos wy ¢ (1.8.42)

Thus the system starting off in {I) is only modified by an overall factor cos wrt. A
similar remark holds with I-1I1. These two modes of vibration, in which all (two)
components of a vector oscillate in step are called normal modes.

The physics of the normal modes is clear in the |1}, |2) basis. In this basis

11
|I>HWH

and corresponds to a state in which both masses are displaced by equal amounts.
The middle spring is then a mere spectator and each mass oscillates with a frequency
1= (k/m)"/* in response to the end spring nearest to it. Consequently
1 |cos[(k/m)'/*f]
|I(t) A A2 [ 1/2
2% Leos[(k/m) /1]

On the other hand, if we start with

1[ 1
w g

the masses are displaced by equal and opposite amounts. In this case the middle
spring is distorted by twice the displacement of each mass. If the masses are adjusted
by A and —A, respectively, each mass feels a restoring force of 3kA (2kA from the
middle spring and kA from the end spring nearest to it). Since the effective force
constant is k.g=3kA/A =3k, the vibrational frequency is (3k/m)'/* and

cos [(3k/m)1/2t]:|

1
A0 < 57 [—cos [(3k/m)"*1]

If the system starts off in a linear combination of (I} and [II) it evolves into
the corresponding linear combination of the normal modes |I(#)> and [II(¢))>. This




is the content of the propagator equation

[x(2)> = U()[x(0)
=|I>{A|x(0)> cos @yt + DT x(0)> cos wyt
=1() ><1|x(0)> + [11(£) >{IT| x(0) >

Another way to see the simple evolution of the initial states {I> and |II) is to
determine the matrix representing U in the |I, |II) basis:

UH[coswlt 0 ] (1.8.43)
LI 0 cos aypt o

basis

You should verify this result by taking the appropriate matrix elements of U(z) in
Eq. (1.8.41b). Since each column above is the image of the corresponding basis
vectors (]I or |II)) after the action of U(r), (which is to say, after time evolution),
we see that the initial states {I> and |II) evolve simply in time.

The central problem in quantum mechanics is very similar to the simple example
that we have just discussed. The state of the system is described in quantum theory
by a ket |v) which obeys the Schrodinger equation

iy =Hly>

where 7 is a constant related to Planck’s constant 2 by #=#h/2n, and H is a Hermitian
operator called the Hamiltonian. The problem is to find |y (z)} given |y (0)). [Since
the equation is first order in ¢, no assumptions need be made about |y(0)), which
is determined by the Schrodinger equation to be (—i/A)H|w(0)).]

In most cases, H is a time-independent operator and the algorithm one follows
in solving this initial-value problem is completely analogous to the one we have just
seen:

Step (1). Solve the eigenvalue problem of H.

Step (2). Find the propagator U(¢) in terms of the eigenvectors and eigenvalues
of H.

Step 3). 1y (D>=U®Iw(0)>.

You must of course wait till Chapter 4 to find out the physical interpretation
of {y), the actual form of the operator H, and the precise relation between U()
and the eigenvalues and eigenvectors of H. 4

Exercise 1.8.11. Consider the coupled mass problem discussed above.

(1) Given that the initial state is |1}, in which the first mass is displaced by unity and
the second is left alone, calculate {1()) by following the algorithm.

(2) Compare your result with that following from Eq. (1.8.39).
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54 Exercise 1.8.12. Consider once again the problem discussed in the previous example.
CHAPTER 1 (1) Assuming that

[X>=Qfx>
has a solution

|x(2)>=U(0)[x(0)>

find the differential equation satisfied by U(r). Use the fact that |x(0)) is arbitrary.
(2) Assuming (as is the case) that Q and U can be simultaneously diagonalized, solve
for the elements of the matrix U in this common basis and regain Eq. (1.8.43). Assume

1%(0)>=0.

1.9. Functions of Operators and Related Concepts

We have encountered two types of objects that act on vectors: scalars, which
commute with each other and with all operators; and operators, which do not
generally commute with each other. It is customary to refer to the former as ¢
numbers and the latter as ¢ numbers. Now, we are accustomed to functions of ¢
numbers such as sin(x), log(x), etc. We wish to examine the question whether
functions of ¢ numbers can be given a sensible meaning. We will restrict ourselves
to those functions that can be written as a power series. Consider a series

!
i

§

where x is a ¢ number. We define the same function of an operator or ¢ number to
be

S(x)= %_Z a,x" (1.9.)

i
fQ)= f; a, Q" (192

n=0

This definition makes sense only if the sum converges to a definite limit. To see what
this means, consider a common example: 1

o OQF i
A=y = (19.

n=1 n! i

Let us restrict ourselves to Hermitian Q. By going to the eigenbasis of Q we can
readily perform the sum of Eq. (1.9.3). Since

@)
(0)]




and
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Q"= 2 (1.9.5)
oy
] w'l"
mz=:0 m!
= (1.9.6)
5 o
m=0 M !

Since each sum converges to the familiar limit ¢®, the operator e is indeed well
defined by the power series in this basis (and therefore in any other).

Exercise 1.9.1.* We know that the series

=5 %

n=0

may be equated to the function f(x)=(1—x)"" if | x| < 1. By going to the eigenbasis, examine
when the ¢ number power series

f@)=73 @

of a Hermitian operator Q2 may be identified with (1 -Q)™".

Exercise 1.9.2.* If H is a Hermitian operator, show that U=¢e"" is unitary. (Notice the
analogy with ¢ numbers: if 0 is real, u=¢" is a number of unit modulus.)

Exercise 1.9.3. For the case above, show that det U=¢""",

Derivatives of Operators with Respect to Parameters

Consider next an operator (1) that depends on a parameter A. Its derivative
with respect to 4 is defined to be

o) [e(m AL)— 0(/1)}
——=lm|{——————
dlL  a-o0 AL

If 8(A) is written as a matrix in some basis, then the matrix representing d0(A) /dA
is obtained by differentiating the matrix elements of §(1). A special case of (1) we
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are interested in is
B(A) =
where Q is Hermitian. We can show, by going to the eigenbasis of Q, that

9O _ o= P20 = (H)Q (19.7)
di

The same result may be obtained, even if Q is not Hermitian, by working with the
power series, provided it exists:

d © lnnn © nln—lnn © ln—lnn—l © lmgm

Qe
dln=o n! n=1 n! n=1 (n_l)' m=0 m!

Conversely, we can say that if we are confronted with the differential Eq. (1.9.7),
its solution is given by

A
8(A)=cexp ('[ Q dl’)= c exp(QA)

(It is assumed here that the exponential exists.) In the above, c is a constant (opera-
tor) of integration. The solution 8 =¢™ corresponds to the choice c=1I.

In all the above operations, we see that Q behaves as if it were just a ¢ number.
Now, the real difference between ¢ numbers and ¢ numbers is that the latter do not
generally commute. However, if only one ¢ number (or powers of it) enter the
picture, everything commutes and we can treat them as ¢ numbers. If one remembers
this mnemonic, one can save a lot of time.

If, on the other hand, more than one ¢ number is involved, the order of the
factors is all important. For example, it is true that

%P = @+ P

as may be verified by a power-series expansion, while it is not true that |

eaﬂeﬂa =eaﬂ + po
or that
eaﬂeﬂae—aﬂ = eﬂa

unless [, 0] =0. Likewise, in differentiating a product, the chain rule is

dil e = QM + Mg (a .9.8)'j
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but not as
a7l ¢)

unless [Q, 8]=0.

1.10. Generalization to Infinite Dimensions

In all of the preceding discussions, the dimensionality (n) of the space was
unspecified but assumed to be some finite number. We now consider the generaliza-
tion of the preceding concepts to infinite dimensions.

Let us begin by getting acquainted with an infinite-dimensional vector. Consider
a function defined in some interval, say, a<x<b. A concrete example is provided
by the displacement f(x, ) of a string clamped at x=0 and x= L (Fig. 1.6).

Suppose we want to communicate to a person on the moon the string’s displace-
ment f(x), at some time ¢. One simple way is to divide the interval 0— L into 20 equal
parts, measure the displacement f(x;) at the 19 points x=L/20, 2L/20, . . ., 19L/20,
and transmit the 19 values on the wireless. Given these f(x;), our friend on the moon
will be able to reconstruct the approximate picture of the string shown in Fig. 1.7.

If we wish to be more accurate, we can specify the values of f(x) at a larger
number of points. Let us denote by f.(x) the discrete approximation to f(x) that
coincides with it at » points and vanishes in between. Let us now interpret the ordered
n-tuple {f.(x1), fu(x2), ..., fu(xs)} as components of a ket | f,> in a vector space
V'(R):

Ja(x1)
X
| fu> & f"(: ) (1.10.1)

Ja(xn)
Figure 1.6. The string is clamped at x=0 flx)
and x = L. It is free to oscillate in the plane L
of the paper. o4 X
Figure 1.7. The string as reconstructed by the .o, [ ‘ l ............... l | ex=L

person on the moon. X X2 X9
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The basis vectors in this space are *

Ix> < |1 |« ith place (1.10.2)‘

o]

corresponding to the discrete function which is unity at x=x; and zero elsewhere.
The basis vectors satisfy

{x;|x;> =0, (orthogonality) (1.10.3).

i Ix:><{x;| =1 (completeness) (1.10.4)
i=1

Try to imagine a space containing # mutually perpendicular axes, one for each
point x;. Along each axis is a unit vector |x;>. The function f,(x) is represented by
a vector whose projection along the ith direction is f,(x;):

[ fa>= ; Sa(x)|x:) (1.10.5)

i

To every possible discrete approximation g,(x), s.(x), etc., there is a corresponding
ket [g.>, |A.y, etc., and vice versa. You should convince yourself that if we define
vector addition as the addition of the components, and scalar multiplication as the
multiplication of each component by the scalar, then the set of all kets representing
discrete functions that vanish at x=0, L and that are specified at n points in between,
forms a vector space.

We next define the inner product in this space: ‘

{Iolgnr = i Su(x:)gn(x:) (1.10.6)

Two functions f,(x) and g.(x) will be said to be orthogonal if { f,|g,.>=0.

Let us now forget the man on the moon and consider the maximal specification
of the string’s displacement, by giving its value at every point in the interval 0— L.
In this case f..(x) =f(x) is specified by an ordered infinity of numbers: an f(x) for
each point x. Each function is now represented by a ket | £ in an infinite-dimen-
sional vector space and vice versa. Vector addition and scalar multiplication are
defined just as before. Consider, however, the inner product. For finite n it was
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in particular
ClRy= 3 UHT

If we now let # go to infinity, so does the sum, for practically any function. What
we need is the redefinition of the inner product for finite n in such a way that as »
tends to infinity, a smooth limit obtains. The natural choice is of course

fulgnd = i Jlx)ga(x)A,  A=L/(n+1) (1.10.6")

1

If we now let n go to infinity, we get, by the usual definition of the integral,

<f|g>=J S(x)g(x) dx (1.10.7)

<f|f>=J FA(x)dx (1.10.8)

If we wish to go beyond the instance of the string and consider complex functions
of x as well, in some interval a <x <5, the only modification we need is in the inner
product:

b
<f|g>=f FH(x)g(x) dx (1.10.9)

What are the basis vectors in this space and how are they normalized? We know
that each point x gets a basis vector {x)>. The orthogonality of two different axes
requires that

XIX>=0,  x#£x' (1.10.10)

What if x=x"? Should we require, as in the finite-dimensional case, {x]x>=1? The
answer is no, and the best way to see it is to deduce the correct normalization. We
start with the natural generalization of the completeness relation Eq. (1.10.4) to the
case where the kets are labeled by a continuous index x':

b
J |x">{x'] dx'=1 (1.10.11)

a
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where, as always, the identity is required to leave each ket unchanged. Dotting bo
sides of Eq. (1.10.11) with some arbitrary ket | ) from the right and the basis b
{x| from the left,

b
J. XX S5 dx' = AL o =<x f) (1.10.12

Now, (x] >, the projection of | f) along the basis ket |x), is just f(x). Likewis
X f>=f(x). Let the inner product {x|x’> be some unknown function (x, x).
Since 8(x, x') vanishes if x#x’ we can restrict the integral to an infinitesimal region
near x'= x in Eq. (1.10.12):

j o 8(x, x') f(x) dX =f(x) (1.10.13)

x—&

In this infinitesimal region, f(x") (for any reasonably smooth /) can be approximated

by its value at x'=x, and pulled out of the integral: ‘
X+ €
f(x) j 8(x, x) dx'=f(x) (1.10.14)
so that
x4+ &
j 6(x, x)dx' =1 (1.10.15)

Clearly 6(x, x') cannot be finite at x’=x, for then its integral over an infinitesimal
region would also be infinitesimal. In fact §(x, x) should be infinite in such a way
that its integral is unity. Since d(x, x) depends only on the difference x— x’, let us
write it as §(x—x"). The “function,” §(x — x’), with the properties

6(x—x")=0, x#x' ¢
(1.10.16)?

b
J d(x—x)dx =1, a<x<b

is called the Dirac delta function and fixes the normalization of the basis vectors:
x|x>=8(x—x) (1.10.17)

It will be needed any time the basis kets are labeled by a continuous index such as
x. Note that it is defined only in the context of an integration: the integral of the
deita function §(x— x’) with any smooth function f(x’) is f(x). One sometimes calls



(a) o< (b)

OA(X'XI) dqe(x-x')

Figure 1.8. (a) The Gaussian g, approaches the delta function as A—0. (b) Its derivative (dg/dx)(x—x')
approaches &'(x—x’) as A—0.

the delta function the sampling function, since it samples the value of the function
f(x') at one point}

I&(x—x’)f(x’) dx'=f(x) (1.10.18)

The delta function does not look like any function we have seen before, its
values being either infinite or zero. It is therefore useful to view it as the limit of a
more conventional function. Consider a Gaussian

1 _on2
gA(x—x’)=(”—A2)]ﬁexp[—%:| (1.10.19)

as shown in Fig. 1.8a. The Gaussian is centered at x'=x, has width A, maximum
height (7A?)~'/?, and unit area, independent of A. As A approaches zero, ga becomes
a better and better approximation to the delta function.§

It is obvious from the Gaussian model that the delta function is even. This may
be verified as follows:

S(x—x)={x| Xy =(X|x>*=6(X—x)*=6(x'—x)

since the delta function is real.
Consider next an object that is even more peculiar than the delta function: its
derivative with respect to the first argument x:

5’(x—x’)=i5(x—x')= —15(x—x’) (1.10.20)
dx dx'

What is the action of this function under the integral? The clue comes from the
Gaussian model. Consider dga(x—x')/dx= —dga(x—x")/dx’ as a function of x'. As
& shrinks, each bump at =+ ¢ will become, up to a scale factor, the § function. The

1 We will often omit the limits of integration if they are unimportant.

§ A fine point that will not concern you till Chapter 8: This formula for the delta function is valid even
if A’ is pure imaginary, say, equal to i8>, First we see from Eq. (A.2.5) that g has unit area. Consider
next the integral of g times f(x) over a region in x’ that includes x. For the most part, we get zero
because f is smooth and g is wildly oscillating as §—0. However, at x=x’, the derivative of the phase
of g vanishes and the oscillations are suspended. Pulling f(x'=x) out of the integral, we get the desired
result.
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62 first one will sample —f(x— &) and the second one +f(x+ &), again up to a scale,

CHAPTER 1| so that
! ! ! df
O'(x—=x)f(Xydx' ocf(x+&)—f(x— 8)=28‘—1—,
X lx=x
The constant of proportionality happens to be 1/2& so that
d
f6’(x—x’)f(x’) dx’=~f _Y (1.10.21)
dx' |y=x dx
This result may be verified as follows: ,
dé(x—x' J
J(S "(x=X)f(x)dx'= JM f(x)dx'= 4 J S(x—x)f(x') dx' ;
dx dx
4 |
dx

Note that §'(x—x') is an odd function. This should be clear from Fig. 1.8b or Eq.
(1.10.20). An equivalent way to describe the action of the &’ function is by the
equation ‘

§'(x—x)=6(x—x) i, (1.1022)
dx ,

i

i

where it is understood that both sides appear in an integral over X' and that the
differential operator acts on any function that accompanies the &' function in the
integrand. In this notation we can describe the action of higher derivatives of the
delta function:

d 5(x—x)=6(x—x’) d
dx" dx"

(1.10.23)

We will now develop an alternate representation of the delta function. We know
from basic Fourier analysis that, given a function f(x), we may define its transform

N
f(k)=(2—n)—,/;J e ™ f(x) dx (1.10.24)



and its inverse

1

f(x) =W

j ) e f(k) dk (1.10.25)

Feeding Eq. (1.10.24) into Eq. (1.10.25), we get

f(x)= f i (l j i dke”‘“"”) f(x) dx
_ \2=m

o0 —oo

Comparing this result with Eq. (1.10.18), we see that

1 [ "
— j dk ™ ™% = §(x'— x) (1.10.26)
2 )_

Exercise 1.10.1.™ Show that 8(ax)=6(x)/\a|. [Consider j é(ax) d(ax). Remember that
8(x)=0(—x).]

Exercise 1.10.2.* Show that

o(x;—
B/ =3 0

where x; are the zeros of f(x). Hint: Where does 6( f(x)) blow up? Expand f(x) near such
points in a Taylor series, keeping the first nonzero term.

b Exercise 1.10.3.* Consider the theta function 0(x — x) which vanishes if x —x’ is negative
and equals 1 if x—x' is positive. Show that é(x—x")=d/dx 0(x—x').

Operators in Infinite Dimensions

Having acquainted ourselves with the elements of this function space, namely,
the kets | /> and the basis vectors |x), let us turn to the (linear) operators that act
on them. Consider the equation

Qf>=1/>

Since the kets are in correspondence with the functions, Q takes the function f(x)
into another, f(x). Now, one operator that does such a thing is the familiar differen-
tial operator, which, acting on f(x), gives f(x)=df(x)/dx. In the function space we
can describe the action of this operator as

D\ f>=df/dx}

where [df/dx) is the ket corresponding to the function df/dx. What are the matrix
elements of D in the |x) basis? To find out, we dot both sides of the above equation
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with <{x|,

_/ |\ _d)
apt ()

and insert the resolution of identity at the right place

J<xu>|x'><x'|f>dx'=iifj (L1
dx

Comparing this to Eq. (1.10.21), we deduce that

d

x| DIXY=D=0"(x—x)=8(x—Xx")
dx’

(1.1

It is worth remembering that D, .= §'(x —x') is to be integrated over the second ir
(x") and pulls out the derivative of f at the first index (x). Some people prefe
integrate §'(x—x") over the first index, in which case it pulls out —df/dx’.
convention is more natural if one views D, as a matrix acting to the right on
components f,-=f(x") of a vector | f>. Thus the familiar differential operator is
infinite-dimensional matrix with the elements given above. Normally one doe
think of D as a matrix for the following reason. Usually when a matrix acts o
vector, there is a sum over a common index. In fact, Eq. (1.10.27) contains suc
sum over the index x'. If, however, we feed into this equation the value of D,,,
delta function renders the integration triviai:

g 4

d
5 WY ' d r—
J(x x)dx'f(x) o dx'|y=x dx

Thus the action of D is simply to apply d/dx to f(x) with no sum over a comm
index in sight. Although we too will drop the integral over the common ind
ultimately, we will continue to use it for a while to remind us that D, like all line
operators, is a matrix.

Let us now ask if D is Hermitian and examine its eigenvalue problem. If D we
Hermitian, we would have
D..=D%},
But this is not the case:
D .=6'(x—x)

while

D =6'(x'—x)*=8'(x—x)=—8"'(x—x")



" But we can easily convert D to a Hermitian matrix by multiplying it with a pure
imaginary number. Consider

K=-iD
which satisfies
K =[~id'(x —x)|*=+id'(X —x)=—i6'(x—x)=Kyr
It turns out that despite the above, the operator K is not guaranteed to be Hermitian,
as the following analysis will indicate. Let | f) and |g) be two kets in the function

space, whose images in the X basis are two functions f(x) and g(x) in the interval
a—b. If K is Hermitian, it must also satisfy

@K f>=CgIKf y=(Kf1g>*=(fIK"Ig)*={fIKig)*

So we ask

b rb
J J <glx)> (xIKIxX') (X' | f5 dx dx’

*

b rb
=(f f <ﬂx><xIK1x’><x’Ig>dxdx’)

- _idf(x)] l{r : [_idg(x)] }*_.j”dg*
Jag (x)[ dx dx= af (X) T dx; =i a—gf(x)dx

*tegrating the left-hand side by parts gives

—g* ) ()| +i f %7 £y ax
a dx

a

So K is Hermitian only if the surface term vanishes:

b

—ig*(x)f(x)| =0 (1.10.29)

In contrast to the finite-dimensional case, K, = K3, is not a sufficient condition for
K to be Hermitian. One also needs to look 4t the behavior of the functions at the
end points a and b. Thus K is Hermitian if the space consists of functions that
obey Eq. (1.10.29). One set of functions that obey this condition are the possible
configurations f(x) of the string clamped at x=0, L, since f(x) vanishes at the end
points. But condition (1.10.29) can also be fulfilled in another way. Consider
functions\yn our own three-dimensional space, parametrized by r, 8, and ¢ (¢ is the
angle measured around the z axis). Let us require that these functions be single
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1
valued. In particular, if we start at a certain point and go once around the z axi
returning to the original point, the function must take on its original value, ie., |

() =f(¢+2m)

In the space of such periodic functions, K=—id/d¢ is a Hermitian operator. Th
surface term vanishes because the contribution from one extremity cancels that from
the other:

2x

—ig*(¢) f(9) N —ilg*(2m) f (2m) —£*(0) £ (0)] =0

In the study of quantum mechanics, we will be interested in functions defin
over the full interval —oo <x<+o0. They fall into two classes, those that vanish
|x| — o0, and those that do not, the latter behaving as ¢**, k being a real parame
that labels these functions. It is clear that K= —i d/dx is Hermitian when sandwichi
between two functions of the first class or a function from each, since in either ¢
the surface term vanishes. When sandwiched between two functions of the secon
class, the Hermiticity hinges on whether

If k=Fk', the contribution from one end cancels that from the other. If k £k, th
answer is unclear since ¢"*~*>* oscillates, rather than approaching a limit as | x| —» o
Now, there exists a way of defining a limit for such functions that cannot make up
their minds: the limit as |x| — oo is defined to be the average over a large intervalj
According to this prescription, we have, say as x — oo,

L+A
) . . 1 N .
lim e** ¢ **= lim — ek =0 ifk#k'
X— 0 L—

A— Y

and so K is Hermitian in this space.

We now turn to the eigenvalue problem of K. The task seems very formidab‘lj
indeed, for we have now to find the roots of an infinite-order characteristic pol
nomial and get the corresponding eigenvectors. It turns out to be quite simple and
you might have done it a few times in the past without giving yourself due credit.
Let us begin with

Klky=klk> (1.10.3



Following the standard procedure,
(x| Klky =k{x| k>
J(le]x’)(x’lk} dx' =kyi(x) (1.10.31)

—i(;ix V() =kyi(x)

where by definition y(x) = <{x|k). This equation could have been written directly
had we made the immediate substitution K=—id/dx in the X basis. From now on
we shall resort to this shortcut unless there are good reasons for not doing so.

The solution to the above equation is simply

wi(x)=A4 ™ (1.10.32)

where 4, the overall scale, is a free parameter, unspecified by the eigenvalue problem.
So the eigenvalue problem of K is fully solved: any real number k is an eigenvalue,
and the corresponding eigenfunction is given by 4 **. As usual, the freedom in
scale will be used to normalize the solution. We choose A to be (1/27)”""? so that

L s
k> < (2”)1/2 e*

and

[c <]

(klk’>=J‘ <k|x><x|k'>dx=51;r e kTR gy =§(k—K) (1.10.33)

(Since (k| k) is infinite, no choice of 4 can normalize |k to unity. The delta function
normalization is the natural one when the eigenvalue spectrum is continuous.)

The attentive reader may have a question at this point. '

“Why was it assumed that the eigenvalue k was real? It is clear that the function
A * with k=k, + ik, also satisfies Eq. (1.10.31).”

The answer is, yes, there are eigenfunctions of X with complex eigenvalues. If,
however, our space includes such functions, K must be classified a non-Hermitian
operator. (The surface term no longer vanishes since ¢** blows up exponentially as
x tends to either +co or —oo, depending on the sign of the imaginary part k2.) In
restricting ourselves to real k we have restricted ourselves to what we will call the
physical Hilbert space, which is of interest in quantum mechanics. This space is
defined as the space of functions that can be either normalized to unity or to the
Dirac delta function and plays a central role in quantum mechanics. (We use the
qualifier “physical” to distinguish it from the Hilbert space as defined by mathemat-
icians, which contains only proper vectors, i.e., vectors normalizable to unity. The
role of the improper vectors in quantum theory will be clear later.)
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We will assume that the theorem proved for finite dimensions, namely, that
eigenfunctions of a Hermitian operator form a complete basis, holds in the Hilbe
space. (The trouble with infinite-dimensional spaces is that even if you have s
infinite number of orthonormal eigenvectors, you can never be sure you have the
all, since adding or subtracting a few still leaves you with an infinite number
them.)

Since K is a Hermitian operator, functions that were expanded in the X ba
with components f(x) = {x|f > must also have an expansion in the K basis. To
the components, we start with a ket | />, and do the following:

1 ©
SEy=CKl fH= f ) oL dx= )mf e f(x)dx (1.103
The passage back to the X basis is done as follows:
Sx)=xfH>= f Cklxy <kl f> dk—(2 )vzf e f(k)dk  (1.10.3%

Thus the familiar Fourier transform is just the passage from one complete basis |x
to another, |k). Either basis may be used to expand functions that belong to th
Hilbert space.

The matrix elements of X are trivial in the K basis:

KKK S =k'Ck| kS =k'6(k~k) (1.10.3
Now, we know where the K basis came from: it was generated by the Hermitiz

operator K. Which operator is responsible for the orthonormal X basis? Let us c:
it the operator X. The kets |x) are its eigenvectors with eigenvalue x:

|

X|{x>=x|x> (1.10.3

Its matrix elements in the X basis are !
XX x> =x6(X —X) (1.10.3

To find its action on functions, let us begin with

Xf=17r
and follow the routine:
x|1X1f>= J(XIX(X'> XNy dX=xf(x)= <X(‘f> =7(x)
Jx)=xf(x)

1 Hereafter we will omit the qualifier “physical.”



Thus the effect of X is to multiply f(x) by x. As in the case of the K operator, one
generally suppresses the integral over the common index since it is rendered trivial
by the delta function. We can summarize the action of X in Hilbert space as

X1 f(x)>=1xf(x)> (1.10.39)

where as usual |xf(x)) is the ket corresponding to the function xf(x).
There is a nice reciprocity between the X and K operators which manifests itself
if we compute the matrix elements of X in the K basis:

1 [~ _ .y
k| XKy =— j e " x e* ™ dx
2z )_

: d{1 ™" &
=+'_ R ’(k_k)xd )z'alk_k/
e ldk (an ¢ x| =id'( )

—o0

Thus if |g(k)) is a ket whose image in the k basis is g(k), then

i de(k
X|g(k)>=|’—(§']i—)> (1.10.40)

In summary then, in the X basis, X acts as x and K as —id/dx [on the functions
f(x)], while in the K basis, K acts like k and X like i d/dk [on f(k)]. Operators with
such an interrelationship are said to be conjugate to each other.

The conjugate operators X and K do not commute. Their commutator may be
calculated as follows. Let us operate X and K in both possible orders on some ket
| f and follow the action in the X basis:

X\ /- xf(x)
d
Ky--iLH
X
So
XK > —»—ixw
dx
. d
KX|f>—>—Id—Xf(X)
X
Therefore

K1 = —ix L v ix L vip=ipmin £
dx dx

$ In the last step we have nsed the fact that 5(k'—k) = S(k—k').
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Since | f > is an arbitrary ket, we now have the desired result:
X, Kl=il

This brings us to the end of our discussion on Hilbert space, except f
example. Although there are many other operators one can study in this s
restricted ourselves to X and K since almost all the operators we will

quantum mechanics are functions of X and P=#%K, where # is a consta
defined later.

Example 1.10.1: A Normal Mode Problem in Hilbert Space. Consider
of length L clamped at its two ends x=0 and L. The displacement y(x, {) ¢
differential equation

’y dy

=X (

or  ox*

Given that at =0 the displacement is y(x, 0) and the velocity y(x, 0)=0,
to determine the time evolution of the string.

But for the change in dimensionality, the problem is identical to tha
two coupled masses encountered at the end of Section 1.8 [see Eq. (1.8.2¢
recommended that you go over that example once to refresh your memor
proceeding further.

We first identify w(x, t) as components of a vector [w(¢)> in a Hilber
the elements of which are in correspondence with possible displacements
functions that are continuous in the interval 0 <x <L and vanish at the end
You may verify that these functions do form a vector space.

The analog of the operator Q in Eq. (1.8.26) is the operator §°/0x*. We re
this to be minus the square of the operator K« —id/dx. Since K acts on a s
which y(0)=w(L)=0, it is Hermitian, and so is K°. Equation (1.10.42)
abstract counterpart

(D)) =—Ky(1)> (1

We solve the initial-value problem by following the algorithm developed in E
1.8.6:

Step (1). Solve the eigenvalue problem of —K*.

Step (2). Construct the propagator U(z) in terms of the eigenvecto
eigenvalues.

Step (3).

lw ()= Uy (0)> ¢



The equation to solve is

Klyy=klv) (1.10.45)
In the X basis, this becomes
42
~e Vil(x) =K yi(x) (1.10.46)
the general solution to which is
wi(x)=A cos kx+ B sin kx (1.10.47)

where 4 and B are arbitrary. However, not all these solutions lie in the Hilbert space
we are considering. We want only those that vanish at x=0 and x=L. At x=0 we
find

yi(0)=0=4 (1.10.48a)
while at x=L we find
0=BsinkL (1.10.48b)
If we do not want a trivial solution (4= B=0) we must demand
sinkL=0, kL=mn, m=1,23,... (1.10.49)

We do not consider negative m since it doesn’t lead to any further LI solutions
[sin(—x) =—sin x]. The allowed eigenvegtors thus form a discrete set labeled by an
integer m:

2\ mnx
m(x)=1— sin | —— 1.10.50
wur= () sn(F) 1103
where we have chosen B=(2/L)"/? so that
L
f Vi X)W (X) dX = 6 (1.10.51)
0
Let us associate with each solution labeled by the integer m an abstract ket |m):

; (my — (2/L)"?sin (%) (1.10.52)

X basis
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If we project |w(#)) on the |m) basis, in which K is diagonal with eigenvalue
(mn /L), the components {m| y(#)> will obey the decoupled equations

d2 2 2
g <mly()=- (mLf ><m| w(®)), m=12,... (1.10.5)

in analogy with Eq. (1.8.33). These equations may be readily solved (subject to the
condition of vanishing initial velocities) as

ml (9> = (m| (0)) cos (me) (11054
Consequently
W)= T I (ml y(0)
= § |m) {m| y(0)) cos wt, mf% (1.10.55)
or
Ui)= i |m) (m) cos @mt, a)m=£nf (1.10.56)
The propagator equation
ly(6)>=U®)|y(0)>
becomes in the |x) basis
xly)=y(x1)
= x| U()|y(0)>
=J UM XD X w(0)) dx' (1.10.57)
0

It follows from Eq. (1.10.56) that

U@ XD =Y, (x| m) {m| X"y cos @t

=y (E> sin (@) sin (mnx ) COS @,,t (1.10.58)
m \L L L




Thus, given any y(x',0), we can get w(x, ) by performing the integral in Eq. 73
{1.10.57), using {xjU(#)|x'> from Eq. (1.10.58). If the propagator language seems MATHEMATICAL
too abstract, we can begin with Eq. (1.10.55). Dotting both sides with (x|, we get INTRODUCTION

w(x, f)= i {xtmy {m| w(0)) cos @t

m=1

_a ()" ’i’i’_‘>
_.mgl (L) sm( 7 cos @t {m| w(0)> (1.10.59)

Given |w(0)>, one must then compute
2\ [t max
mly(0)>={— sin | — x,0)d
(mly(0)> (L> L n( 3 )w( ) dx

Usually we will find that the coefficients {m| w(0)) fall rapidly with m so that a few
leading terms may suffice to get a good approximation. O

Exercise 1.10.4. A string is displaced as follows at r=0:

2xh L
x’O =, OS <—
v(x,0) I x<o
2 L
=—h(L—x), —<x<L
L 2

Show that

(x, = OZO: sin(”ﬂ>cosw t-( i )sin(ﬂ'l—)
vix o L ™ \rm? 2



]
Review of Classical Mechanics

In this chapter we will develop the Lagrangian and Hamiltonian formulations of
mechanics starting from Newton’s laws. These subsequent reformulations of mechan-
ics bring with them a great deal of elegance and computational ease. But our principal
interest in them stems from the fact that they are the ideal springboards from which
to make the leap to quantum mechanics. The passage from the Lagrangian formula-
tion to quantum mechanics was carried out by Feynman in his path integral formal-
ism. A more common route to quantum mechanics, which we will follow for the
most part, has as its starting point the Hamiltonian formulation, and it was dis-
{ covered mainly by Schrdodinger, Heisenberg, Dirac, and Born.

It should be emphasized, and it will soon become apparent, that all three formu-
lations of mechanics are essentially the same theory, in that their domains of validity
and predictions are identical. Nonetheless, in a given context, one or the other may
be more inviting for conceptual, computational, or simply aesthetic reasons.

2.1. The Principle of Least Action and Lagrangian Mechanics

Let us take as our prototype of the Newtonian scheme a point particle of mass
m moving along the x axis under a potential ¥(x). According to Newton’s Second
Law,

miX__4 @.1.1)

If we are given the initial state variables, the position x(z;) and velocity X(t;), we
can calculate the classical trajectory x.(#) as follows. Using the initial velocity and
acceleration [obtained from Eq. (2.1.1)] we compute the position and velocity at a
time #,+ At. For example,

k Xa (01 Af) = x(t;) + %(1;)At

Having updated the state variables to the time #;+ At, we can repeat the process
again to inch forward to ,+ 2At and so on.
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(%g,t¢)

0\
W

Figure 2.1. The Lagrangian formalism asks what

tinguishes the actual path x (r) taken by the particle fr

all possible paths connecting the end points (x;, #) a
t o ()

(xi,4)

The equation of motion being second order in time, two picces of data, x(;,
and x(t;), are needed to specify a unique x4 (). An equivalent way to do the sam
and one that we will have occasion to employ, is to specify two space-time poin
(x:» ;) and (xy, t;) on the trajectory.

The above scheme readily generalizes to more than one particle and more th
one dimension. If we use n Cartesian coordinates (x;, X2, ..., X,) to specify th
positions of the particles, the spatial configuration of the system may be visualiz
as a point in an n-dimensional configuration space. (The term “configuration space’
is used even if the n coordinates are not Cartesian.) The motion of the representati
point is given by

2
mjff_f_fz _v 212
df 6xj

where m; stands for the mass of the particle whose coordinate is x;. These equatio4
can be integrated step by step, just as before, to determine the trajectory.

In the Lagrangian formalism, the problem of a single particle in a potential
V(x) is posed in a different way: given that the particle is at x; and x, at times ¢, and
ty, respectively, what is it that distinguishes the actual trajectory x4 (f) from all other
trajectories or paths that connect these points? (See Fig. 2.1.)

The Lagrangian approach is thus global, in that it tries to determine at one
stroke the entire trajectory x. (¢), in contrast to the local approach of the Newtonian
scheme, which concerns itself with what the particle is going to do in the next
infinitesimal time interval.

The answer to the question posed above comes in three parts:

(1) Define a function %, called the Lagrangian, given by ¥ =T~V, T and
being the kinetic and potential energies of the particle. Thus £ =L(x, %, ¢). T
explicit ¢ dependence may arise if the particle is in an external time-dependent fiel
We will, however, assume the absence of this ¢ dependence.

(2) For each path x(f) connecting (x;, t;) and (xy,t,), calculate the actioq
S[x(£)] defined by

S[x(H)] = f ! L(x, %) dt (2.1.3’




s ) . (x l |“)
Figure 2.2. If xq () minimizes S, then 65V =0 if we

go to any nearby path x. (1) + n(2). 1

We use square brackets to enclose the argument of S to remind us that the function
S depends on an entire path or function x(¢), and not just the value of x at some
time 7. One calls S a functional to signify that it is a function of a function.

(3) The classical path is one on which S is a minimum. (Actually we will only
require that it be an extremum. It is, however, customary to refer to this condition
as the principle of least action.)

We will now verify that this principle reproduces Newton’s Second Law.

The first step is to realize that a functional S[x(?)] is just a function of » variables
as n—c0. In other words, the function x(f) simply specifies an infinite number of
values x(1;), ..., x(1), ..., x(¢), one for each instant in time ¢ in the interval
t<t<t, and Sis a function of these variables. To find its minimum we simply
generalize the procedure for the finite n case. Let us recall that if /=1 (x1, ..., Xx) =
f(x); the minimum x° is characterized by the fact that if we move away from it by
a small amount 7 in any direction, the first-order change 61" in f vanishes. That
is, if we make a Taylor expansion:

fC+n) =fxH+Y gf— , 1+ higher-order terms in 1 (2.14)
i=1 ilx
then
ng
sf=Y 6—1:— , n;=0 (2.1.5)
i=1 ilx ’

From this condition we can deduce an equivalent and perhaps more familiar
expression of the minimum condition: every first-order partial derivative vanishes at
x°. To prove this, for say, of/0x:, we simply choose 1 to be along the ith direction.
Thus

LA

=0, i=1,...,n (2.1.6)
6)(,‘

0
X

Let us now mimic this procedure for the action S. Let xa (¢) be the path of least
action and x4 (£) + 1(7) a “nearby” path (see Fig. 2.2). The requirement that all
paths coincide at #; and 1, means

n(t)=n(t)=0 (2.1.7)
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S[xa () +n(n)] =f L (xa(t) + 1(8); Xalt) + 1(0)) dt

i
=f l:'g(xcl(t), xcl(t)) +_a§; : 71(’)
\ (1)
0¥ .
+a—x(t—)x01' T](l)+ :ldl

= 8[xq (£)] + 68V + higher-order terms

We set §§=0 in analogy with the finite variable case:

0=6S(”:JU[—6$
. Lox(1)

i

0%
' ﬂ(1)+a.— ' ﬁ(f)] dr

Xel X (t) Xl

If we integrate the second term by parts, it turns into

v ’f[ d 8% ]
- ——— | -n(ndr
4 _[t dt 0x(1) -

i

0

251 n(t)

Xcl

The first of these terms vanishes due to Eq. (2.1.7). So that

P "[fz_gﬁ] .
0=68 J o0 di 3% n(?) dt .1

i Xcl

Note that the condition §§" =0 implies that S is extremized and not necessari
minimized. We shall, however, continue the tradition of referring to this extrem
as the minimum. This equation is the analog of Eq. (2.1.5): the discrete variable
is replaced by 1(¢); the sum over 7 is replaced by an integral over ¢, and df/0x; i
replaced by

ox(t) dt 8x(1)

There are two terms here playing the role of df/0x; since ¥ (or equivalently S)
both explicit and implicit (through the X terms) dependence on x(¢). Since n(r)
arbitrary, we may extract the analog of Eq. (2.1.6):

o

ax(t) di| %)

=0 fory<t<t (2.1
ox(1) di ]}Mm !

To deduce this result for some specific time £, we simply choose an 1(¢) that vanish
everywhere except in an infinitesimal region around £.



Equation (2.1.9) is the celebrated Euler—Lagrange equation. If we feed into it
=T-V, T=3mx*, V=V(x), we get

o that the Euler-Lagrange equation becomes just

@ ity

dt Ox

‘which is just Newton’s Second Law, Eq. (2.1.1).
If we consider a system described by n Cartesian coordinates, the same procedure
yields

d (0% 0¥
—|— = (=1,..., 2.1.10
dt (ax,.) o U ") (2.1.10)
T=3 Y m(%)?
i=1
and
V="V(x, s Xp)
8o that Eq. (2.1.10) becomes
N4
d—(mixi) Ox;

f
‘which is identical to Eq. (2.1.2). Thus the minimum (action) principle indeed repro-
duces Newtonian mechanics if we choose ¥ =T~-7V.

Notice that we have assumed that V is velocity-independent in the above proof.
An important force, that of a magnetic field B on a moving charge is excluded by
this restriction, since Fp=gv x B, g being the charge of the particle and v=r its
velocity. We will show shortly that this force too may be accommodated in the
Lagrangian formalism, in the sense that we can find an % that yields the correct
force law when Eq. (2.1.10) is employed. But this % no longer has the form T— V.
'One therefore frees oneself from the notion that ¥ =T—V; and views ¥ as some
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function £ (x;, x;) which yields the correct Newtonian dynamics when fed into t
Euler-Lagrange equations. To the reader who wonders why one bothers to ev
deal with a Lagrangian when all it does is yield Newtonian force laws in the end,
present a few of its main attractions besides its closeness to quantum mechani
These will then be illustrated by means of an example.

(1) In the Lagrangian scheme one has merely to construct a single scalar ¢
and all the equations of motion follow by simple differentiation. This must be con-
trasted with the Newtonian scheme, which deals with vectors and is thus more
complicated.

(2) The Euler-Lagrange equations (2.1.10) have the same form if we use, inst
of the n Cartesian coordinates x,, . . ., x,, any general set of » independent coord
nates ¢, g2, . . ., gn. To remind us of this fact we will rewrite Eq. (2.1.10) as

a (%)J% @11

d—t 6(], 6q,

One can either verify this by brute force, making a change of variables in Eq. (2.1.10)
and seeing that an identical equation with x; replaced by ¢, follows, or one can simply
go through our derivation of the minimum action condition and see that nowher
were the coordinates assumed to be Cartesian. Of course, at the next stage, in showing
that the Euler-Lagrange equations were equivalent to Newton’s, Cartesian coord:
nates were used, for in these coordinates the kinetic energy 7" and the Newtonian
equations have simple forms. But once the principle of least action is seen to generate
the correct dynamics, we can forget all about Newton’s laws and use Eq. (2.1.11)
as the equations of motion. What is being emphasized is that these equations, which
express the condition for least action, are form invariant under an arbitrary change
of coordinates. This form invariance must be contrasted with the Newtonian equation
(2.1.2), which presumes that the x; are Cartesian. If one trades the x; for another
non-Cartesian set of ¢;, Eq. (2.1.2) will have a different form (see Example 2.1.1 at
the end of this section).

Equation (2.1.11) can be made to resemble Newton’s Second Law if one defines
a quantity

0
pi=~°?i (2.1.12
6(],-
called the canonical momentum conjugate to g; and the quantity
Fi=a£ (2.1.1
0q;

called the generalized force conjugate to q;. Although the rate of change of th
canonical momentum equals the generalized force, one must remember that neith
is p; always a linear momentum (mass times velocity or “‘mv” momentum), nor is
always a force (with dimensions of mass times acceleration). For example, if g; is
angle 0, p; will be an angular momentum and F; a torque.



(3) Conservation laws are easily obtained in this formalism. Suppose the Lag-
rangian depends on a certain velocity ¢; but not on the corresponding coordinate g;.
The latter is then called a cyclic coordinate. It follows that the corresponding p; is
conserved:

d dp; 0
a\og) dat o

Although Newton’s Second Law, Eq. (2.1.2), also tells us that if a Cartesian coordi-
nate x;is cyclic, the corresponding momentum m;x; is conserved, Eq. (2.1.14) is more
general. Consider, for example, a potential V(x, y) in two dimensions that depends
only upon p=(x*+y)'"?, and not on the polar angle ¢, so that ¥(p, ¢)=V(p). It
follows that ¢ is a cyclic coordinate, as T depends only on ¢ (see Example 2.1.1
below). Consequently 8.% /8¢ = p, is conserved. In contrast, no obvious conservation
law arises from the Cartesian Eqs. (2.1.2) since neither x nor y is cyclic. If one
rewrites Newton’s laws in polar coordinates to exploit 8¥/dé =0, the corresponding
equations get complicated due to centrifugal and Coriolis terms. It is the Lagrangian
formalism that allows us to choose coordinates that best reflect the symmetry of the
potential, without altering the simple form of the equations.

Example 2.1.1. We now illustrate the above points through an example. Con-
sider a particle moving in a plane. The Lagrangian, in Cartesian coordinates, is

L=sm(2+ 7)) - V(x, y)
=3mv-v— V(x, y) (2.1.15)

where v is the velocity of the particle, with v=F, r being its position vector. The
corresponding equations of motion are

mi==2Y (2.1.16)
ox

my'=—6—If (2.1.17)
oy

which are identical to Newton’s laws. If one wants to get the same Newton’s laws
in terms of polar coordinates p and ¢, some careful vector analysis is needed to
unearth the centrifugal and Coriolis terms:

0 .
mp'=——V+mp(¢)2 (2.1.18)
op
m<}5=——15 QK_M (2.1.19)
p oy p
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ds

&QB )

d¢
® Figure 2.3. Points (1) and (2) are positions of the
x  particle at times differing by Ar.

Notice the difference in form between Eqs. (2.1.16) and (2.1.17) on the one hand
and Egs. (2.1.18) and (2.1.19) on the other.

In the Lagrangian scheme one has only to recompute % in polar coordinates,
From Fig. 2.3 it is clear that the distance traveled by the particle in time At is

dS=[(dp)*+ (p d¢)’)""?

so that the magnitude of velocity is
s . .
v="2=[(3)+ p*($))"”
dt
and

L=im(p*+p* )= V(p, ¢) (2.1.20p

(Notice that in these coordinates T involves not just the velocities  and ¢ but alsd
the coordinate p. This does not happen in Cartesian coordinates.) The equations o
motion generated by this ¥ are

d 14 ”
= (mp)=—+ 2.1.21
dt(mp) o mp¢ (
d . 14
— =— 2.12
" (mp~9) y (

which are the same as Eqgs. (2.1.18) and (2.1.19). In Eq. (2.1.22) the canoni
momentum py=mp>¢ is the angular momentum and the generalized force —aV/d
is the torque, both along the z axis. Notice how easily the centrifugal and Coriolis
forces came out.
Finally, if V(p, ¢)=V{(p), the conservation of p, is obvious in Eq. (2.1.22).
The conservation of p, follows from Eq. (2.1.19) only after some manipulations and
1s practically invisible in Eqgs. (2.1.16) and (2.1.17). Both the conserved quantity and
its conservation law arise naturally in the Lagrangian scheme. g




’ Exercise 2.1.1.* Consider the following system, called a harmonic oscillator. The block
has a mass m and lies on a frictionless surface. The spring has a force constant k.

k
/W

-

Write the Lagrangian and get the equations of motion.

Exercise 2.1.2.* Do the same for the coupled-mass problem discussed at the end of
Section 1.8. Compare the equations of motion with Egs. (1.8.24) and (1.8.25).

Exercise 2.1.3.* A particle of mass m moves in three dimensions under a potential
Vr, 8, §)=V(r). Write its & and find the equations of motion.

12.2. The Electromagnetic Lagrangianf

Recall that the force on a charge ¢ due to an electric field E and magnetic field
is given by

F=q(E+§><B) 2.2.1)

where v=F is the velocity of the particle. Since the force is velocity-dependent, we
must analyze the problem afresh, not relying on the preceding discussion, which was
restricted to velocity-independent forces.

Now it turns out that if we use

28.m=%mv-v—q¢+gv'A (2.2.2)
¢

{
we get the correct electromagnetic force laws. In Eq. (2.2.2) ¢ is the velocity of light,
while ¢ and A are the scalar and vector potentials related to E and B via

l E= —qu—l G_A (2.2.3)
: c Ot
and

B=VxA 2.24)

1 See Section 18.4 for a review of classical electromagnetism.
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The Euler-Lagrange equations corresponding to %.,.,,, are

i(mxi+€Ai)=—q%+gM, i=1,2,3 22
dt c ox; ¢ Ox;

Combining the three equations above into a single vector equation we get

d A
hid (mv+g——>= —gVo+Iv(v-A) 2
dt c c
The canonical momentum is
A
p=mv+12 Q2
(4
Rewriting Eq. (2.2.6), we get
d q[ dA }
—(mv)=—qgVe¢p+—-| —=+V(v-A 228
dz( )=—qV¢ o (v-A) (

Now, the total derivative dA /dt has two parts: an explicit time dependence 04/t
plus an implicit one (v+V)A which represents the fact that a spatial variation in A
will appear as a temporal variation to the moving particle.Now Eq. (2.2.8) become

4 = —avo—-1 A - A)—(v-
7 (mv)=—qV¢ Y +C[V(v A)—(v-V)A] (229

which is identical to Eq. (2.2.1) by virtue of the identity
vX(VXA)Y=V(v-A)—(v*V)A ‘
A

Notice that ..., is not of the form T— V, for the quantity U=g¢ — (g/c)v:
(sometimes called the generalized potential) cannot be interpreted as the potential
energy of the charged particle. First of all, the force due to a time-dependent electro-
magnetic field is not generally conservative and does not admit a path-independent
work function to play the role of a potential. Even in the special cases when the
force is conservative, only g¢ can be interpreted as the electrical potential energy.,
The [—q(v-A)/c] term is not a magnetic potential energy, since the magnetic force
Fz=¢q(vxB)/c never does any work, being always perpendicular to the velocity. To
accommodate forces such as the electro-magnetic, we must, therefore, redefine & to
be that function Z(q, ¢, ) which, when fed into the Euler-Lagrange equations,
reproduces the correct dynamics. The rule & = T— ¥ becomes just a useful mnemonic
for the case of conservative forces.

|



ma

A

m

Figure 2.4. The relation !Jetween n,nand rem, I

2.3. The Two-Body Problem

We discuss here a class of problems that plays a central role in classical physics:
that of two masses m, and m, exerting equal and opposite forces on each other.
Since the particles are responding to each other and nothing external, it follows that
the potential between them depends only on the relative coordinate x=r;—1; and
not the individual positions r, and r,. But ¥(r;, rz) = V(r; —r2) means in turn that
there are three cyclic coordinates, for ¥ depends on only three variables rather than
the possible six. (In Cartesian coordinates, since T is a function only of velocities, a

_coordinate missing in ¥ is also cyclic.) The corresponding conserved momenta will
of course be the three components of the total momentum, which are conserved in
the absence of external forces. To bring out these features, it is better to trade r,
and r, in favor of

r=r-—n, ' (2.3.1)
and
+
rCM:M (2.3.2)
n +m2

where ray is called the center-of-mass (CM) coordinate. One can invert Egs. (2.3.1)
and (2.3.2) to get (see Fig. 2.4)

mor

o I =rCM+ (233)
m; +m;y
n=IcM~ dal (2.3.4)
m +m2
If one rewrites the Lagrangian
P=3m b} + 3mo|b> = V(1 —12) (2.3.5)
in terms of rcy and r, one gets
1 . o 1 o mimy o
F==(m+my)|icm| " +- —— [E]=— V(x) (2.3.6)
2 2m+m
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The main features of Eq. (2.3.6) are the following.

(1) The problem of two mutually interacting particles has been transforme
that of two fictitious particles that do not interact with each other. In other wor
the equations of motion for r do not involve rey and vice versa, because Z(r, i
I'cMm, i'CM) = eg(l’, l') + eg(l'cm, i'CM)-

(2) The first fictitious particle is the CM, of mass M =m, +m;,. Since rem is
cyclic variable, the momentum pcem = Micy (Which is just the total momentum) i
conserved as expected. Since the motion of the CM is uninteresting one usual
ignores it. One clear way to do this is to go to the CM frame in which Fcm =0,
that the CM is completely eliminated in the Lagrangian.

(3) The second fictitious particle has mass p=mmy/(m +m;) (called
reduced mass), momentum p =y and moves under a potential ¥(r). One has just
solve this one-body problem. If one chooses, one may easily return to the coordinat
r; and r, at the end, using Eqgs. (2.3.1) and (2.3.2).

Exercise 2.3.1.* Derive Eq. (2.3.6) from (2.3.5) by changing variables.

2.4. How Smart Is a Particle?

The Lagrangian formalism seems to ascribe to a particle a tremendous amo
of foresight: a particle at (x;, t;) destined for (x,, ¢;) manages to calculate ahead
time the action for every possible path linking these points, and takes the one wi
the least action. But this, of course, is an illusion. The particle need not know its"
entire trajectory ahead of time, it needs only to obey the Euler-Lagrange equations
at each instant in time to minimize the action. This in turn means just following
Newton’s law, which is to say, the particle has to sample the potential in its immediate
vicinity and accelerate in the direction of greatest change.

Our esteem for the particle will sink further when we learn quantum mechanics.
We will discover that far from following any kind of strategy, the particle, in a sense,
goes from (x;, t;) to (x,, ;) along all possible paths, giving equal weight to each!
How it is that despite this, classical particles do seem to follow xy () is an interestin
question that will be answered when we come to the path integral formalism o
quantum mechanics.

2.5. The Hamiltonian Formalism

In the Lagrangian formalism, the independent variables are the coordinates
and velocities ¢;. The momenta are derived quantities defined by

o

=— 2.5.1
04: (

Di



In the Hamiltonian formalism one exchanges the roles of ¢ and p: one replaces the
Lagrangian #(g, ¢)} by a Hamiltonian #(q, p) which generates the equations of
motion, and ¢ becomes a derived quantity,

o

= 252
o, (2:5.2)

gi

thereby completing the role reversal of the ¢’s and the p’s.

There exists a standard procedure for effecting such a change, called a Legendre
transformation, which is illustrated by the following simple example. Suppose we
have a function f(x) with

d
u(x)= ?‘é (2.5.3)

Let it be possible to invert u(x) to get x(u). [For example if u(x)=x>, x(u)=u'",
etc.] If we define a function

&) =x(uyu—f(x(u)) (2.54)
then
dg_dx _d dx_
- dn u+x(u) i x(u) (2.5.5)

That is to say, in going from f to g (or vice versa) we exchange the roles of x and
u. One calls Eq. (2.5.4) a Legendre transformation and f and g Legendre transforms
of each other.

More generally, if f=f(x, x2, . .., X»), one can eliminate a subset {x,,i=1 to
j} in favor of the partial derivatives u;= 0f/0x; by the transformation

J
Ui, o Uy X1y, X)) = Y UXi— (X1, oy Xp) (2.5.6)
i=1

1

It is understood in the right-hand side of Eq. (2.5.6) that all the x,’s to be ¢liminated
have been rewritten as functions of the allowed variables in g. It can be easily verified
that

% - (2.5.7)

where in taking the above partial derivative, one keeps all the other variables in g
constant.

1 We will often refer to ¢;,...,9,as gand p;, ..., p, as p.

87

REVIEW OF
CLASSICAL
MECHANICS



88

CHAPTER 2

Table 2.1. Comparison of the Lagrangian and Hamiltonian Formalisms ‘

Lagrangian formalism Hamiltonian formalism

(1) The state of a system with n degrees of (1) The state of a system with n degrees of fr
freedom is described by »n coordinates dom is described by n coordinates and
(4, ...,q,) and n velocities (41, ..., 4,), Or momenta (¢,,...,4.; P1,...,Ps) OF, MO
in a more compact notation by (g, §). succinctly, by (g, p).

(2) The state of the system may be represented  (2) The state of the system may be represent
by a point moving with a definite velocity in by a point in a 2n-dimensional phase spac,
an n-dimensional configuration space. with coordinates (g1, ..., qn; D1+ .., Pn)

(3) The n coordinates evolve according to n  (3) The 2n coordinates and momenta obey 2
second-order equations. first-order equations.

(4) For a given %, several trajectories may pass (4) For a given # only one trajectory passe|
through a given point in configuration space through a given point in phase space.
depending on 4.

Applying these methods to the problem in question, we define '

H(q,p)= 3 pgi— (g, 9) (2.58)
i=1
where the ¢’s are to be written as functions of ¢’s and p’s. This inversion is generally
easy since & is a polynomial of rank 2 in ¢, and p;= 3. /04, is a polynomial of rank
1 in the ¢’s, e.g., Eq. (2.2.7). Consider now

ox 0
_—=— ,— L 259
dp;  Op; ( j P ) ¢
. 0qg; 0% dq,
j japi j 5qj ap,
0,
=g (sincep,::Z) (2.5.10
a4,

[There are no (8.%/0q;)(0g;/0p;) terms since g is held constant in 03¢ /0p;; that is,
g and p are independent variables.] Similarly,
a0 0%y ot

—=YPT L

: @2.5.11)
0q. 7 " O0q Oqi 7 04; Oqi 0g;

We now feed in the dynamics by replacing (6.¥/0q;) by p:, and obtain Hamilton’
canonical equations:

%=4u —%ﬂﬁi (2.5.12)
op; 0q;
Note that we have altogether 2n first-order equations (in time) for a system with
degrees of freedom. Given the initial-value data, (g;(0), p:(0)), i=1,..,n, we ca
integrate the equations to get (g:(1), p:(1)).
Table 2.1 provides a comparison of the Lagrangian and Hamiltonian
formalisms. ]




Now, just as & may be interpreted as T — V'if the force is conservative, so there
exists a simple interpretation for # in this case. Consider the sum Y., pigi. Let us
use Cartesian coordinates, in terms of which

T= i %m,x,2
Py
¢ _or_ .
Yook, 0x o
and
: S pii= S mi=2T (2.5.13)
= i1
so that
H=Lpri=L=T+V (2.5.14)

. A
b

e total energy. Notice that although we used Cartesian coordinates along the
Jvay, the resulting equation (2.5.14) is a relation among scalars and thus coordinate
ndependent.

[t Exercise 2.5.1. Show that if T=%3 T;(q)4:q,, where §’s are generalized velocities,
 pigi=2T.

The Hamiltonian method is illustrated by the simple example of a harmonic
koscillator, for which

The canonical momentum is

=—=mx
P= 0%

It is easy to invert this relation to obtain x as a function of p:

xX=p/m
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H(x, p)=T+V=3m[x(p)]"+ zkx
2 d
P e (2.5.15)
2m 2
The equations of motion are 4
oK
SN (2.5.16)
op m
oH
——=p->—kx=p (2.5.17)
dg

These equations can be integrated in time, given the initial g and p. If, however, we
want the familiar second-order equation, we differentiate Eq. (2.5.16) with respect
to time, and feed it into Eq. (2.5.17) to get 1

mx+kx=0 :

1

Exercise 2.5.2. Using the conservation of energy, show that the trajectories in phase
space for the oscillator are ellipses of the form (x/a)>+(p/b)*=1, where a*=2E/k and #*=
2mE. i

Exercise 2.5.3. Solve Exercise 2.1.2 using the Hamiltonian formalism.

Exercise 2.5.4.* Show that # corresponding to % in Eq. (2.3.6) is o = |pem|>/2M + |p%/
2u+ V(r), where M is the total mass, u is the reduced mass, pcy and p are the momenta
conjugate to rey and r, respectively.

2.6. The Electromagnetic Force in the Hamiltonian Scheme

The passage from Z..,, to its Legendre transform .., is not sensitive in any
way to the velocity-dependent nature of the force. If .., generated the correct force
laws, so will #..,,, the dynamical content of the schemes being identical. In contrast,
the velocity independence of the force was assumed in showing that the numerical
value of ¢ is T+ V, the total energy. Let us therefore repeat the analysis for the
electromagnetic case. As

Loom= %mv'v—qd}-f-gv-A
¢

andi 1

{ Note that in this discussion, g is the charge and not the coordinate. The (Cartesian) coordinate r is
hidden in the functions A(r, ¢) and ¢ (x, ).



A
p=mv+q—
¢

we have

=3mv-vt+qp=T+qe (2.6.1)

ow, there is something very disturbing about Eq. (2.6.1): the vector potential A
seems to have dropped out along the way. How is .., to generate the correct
dynamics without knowing what A is? The answer is, of course, the & is more than
just T+g¢; it is T+g¢ written in terms of the correct variables, in particular, in
 terms of p and not v. Making the change of variables, we get

_le-gA/or

e < H em
3 2m

¢ (2.6.2)

with the vector potential very much in the picture.

2.7. Cyclic Coordinates, Poisson Brackets, and Canonical Transformations

Cyclic coordinates are defined here just as in the Lagrangian case and have the
same significance: if a coordinate g¢; is missing in 5, then

p=——=0 (2.7.1)

Now, there will be other quantities, such as the energy, that may be conserved in
addition to the canonical momenta.§ There exists a nice method of characterizing
these in the Hamiltonian formalism. Let @ (p, ¢) be some function of the state vari-
ables, with no explicit dependence on t. Its time variation is given by

dw o . Jw .
io_y (10,50,

dt 7 aq,f op;
_z(ﬂﬂﬁf_éﬂﬁf)
7 \0q; dp; Op, Oq;
={w, #) (2.7.2)

§ Another example is the conservation of I.=xp,—yp, when V(x, y)=V(x*+ ). There are no cyclic
coordinates here. Of course, if we work in polar coordinates, ¥(p, ¢)=¥(p), and p,=mp’¢p=1, is
conserved because it is the momentum conjugate to the cyclic coordinate ¢.

k

91

REVIEW OF
CLASSICAL
MECHANICS



92
CHAPTER 2

where we have defined the Poisson bracket (PB) between two variables @(p, ¢) and
A(p, q) to be

{w, 2=}

i

}« .
(2022 20 2) 019
0q; dp:  0Op: Oq;

It follows from Eq. (2.7.2) that any variable whose PB with 5 vanishes is constant in
time, i.e., conserved. In particular 5 itself is a constant of motion (identified as the
total energy) if it has no explicit ¢ dependence.

Exercise 2.7.1.* Show that
{@, 4} =—{} o}
{o,2+0}={0, A} +{o, o}
{w, A0} ={w, A\}o+A{o, 0}

Note the similarity between the above and Eqgs. (1.5.10) and (1.5.11) for commutators.

Of fundamental importance are the PB between the ¢’s and the p’s. Observe,
that I

{gi, 9} ={pi p;} =0 (2.7.40)
{q:, 0} =6y (2.7 4b)
since (g;, . . . , p») are independent variables (0g;/0g;= 6, 0q:/0px=0, etc.). Hamil-

ton’s equations may be written in terms of PB as

g:={q:, H} (2.7.5a)!
pi={pi, #} (2.7.5b)
by setting @ =g; or p, in Eq. (2.7.2). i

Exercise 2.7.2.* (i) Verify Eqgs. (2.7.4) and (2.7.5). (ii) Consider a problem in two dimen-
sions given by # =p}+p2+ax®+by’. Argue that if a=b, {I,, #} must vanish. Verify by
explicit computation.

Canonical Transformations i

We have seen that the Euler-Lagrange equations are form invariant under an
arbitrary} change of coordinates in configuration space

q—=>3:(q1s - -5 qGn)s i=1,...,n (2.7.63)

1 We assume the transformation is invertible, so we may write g in terms of §: g=¢(§). The transformation,
may also depend on time explicitly [§=g(qg, £)], but we do not consider such cases. i



or more succinctly

q-q(q) (2.7.6b)

response of the velocities to this transformation follows from Eq. (2.7.6a):

;'e
. . dg (aq,-).
1.: l.:—: — . 2-7-7
G=a=" ? P gj (2.7.7)

The response of the canonical momenta may be found by rewriting £ in terms of
(4, §) and taking the derivative with respect to g:

0%(q, g
5=224.9 (2.7.8)
aqi
The result is (Exercise 2.7.8):
_ 0g;
=Y (-_—’)p,- (2.1.9)
; \0g;

Notice that although .# enters Eq. (2.7.8), it drops out in Eq. (2.7.9), which connects
b to the old variables. This is as it should be, for we expect that the response of the
momenta to a coordinate transformation (say, a rotation) is a purely kinematical
question. . )

A word of explanation about #(g, §). By £(¢, §) we mean the Lagrangian (say
T-V, for definiteness) written in terms of g and . Thus the numerical value of the
Lagrangian is unchanged under (g, §) — (g, 3); for (g, 4) and (g, §) refer to the same
physical state. The functional form of the Lagrangian, however, does change and so
we should really be using two different symbols #(q, ) and #(g, §). Nonetheless
we follow the convention of denoting a given dynamical variable, such as the Lag-
rangian, by a fixed symbol in all coordinate systems. )

The invariance of the Euler-Lagrange equations under (g, §) — (g, §) implies
the invariance of Hamilton’s equation under (g, p) = (4, p), i.e., (g, p) obey

G=0H/0p,  Pi=—(0H/37) (27.10)

where #°=#(q, p) is the Hamiltonian written in terms of g and p. The proof is
simple: we start with £(g, ¢), perform a Legendre transform, and use the fact that
4 obeys Euler-Lagrange equations.

The transformation

~ _ dq;
=4 (q1, .- qn), D=y, (—’)pj (2.7.11)
~\ ag;
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is called a point transformation. If we view the Hamiltonian formalism as some
derived from the Lagrangian scheme, which is formulated in n-dimensional cc
uration space, this is the most general (time-independent) transformation w
preserves the form of Hamilton’s equations (that we can think of). On the ¢
hand, if we view the Hamiltonian formalism in its own right, the backdrop i
2n-dimensional phase space. In this space, the point transformation is unnecess

restrictive. One can contemplate a more general transformation of phase s
coordinates:

q—~q(q,p)

2.7
p-p(q.p)
Although all sets of 2n independent coordinates (g, p) are formally adequate
describing the state of the system, not all of them will preserve the canonical fi
of Hamilton’s equations. (This is like saying that although Newton’s laws may
written in terms of any complete set of coordinates, the simple form mg,=—dV
is valid only if the g; are Cartesian). If, however, (g, p) obey the canonical equati
(2.7.10), we say that they are canonical coordinates and that Eq. (2.7.12) defin¢
canonical transformation. Any set of coordinates (q,, . . ., g,), and the correspond
momenta generated in the Lagrangian formalism (p,= 0.%/dg;), are canonical coo
nates. Given one set, (g, p), we can get another, (g, p), by the point transformati
which is a special case of the canonical transformation. This does not, howes
exhaust the possibilities. Let us now ask the following question. Given a new sei

coordinates (§(q, p), p(q. p)), how can we tell if they are canonical [assuming (g,
are}? Now it is true for any o(x, p) that

é
o={w, #}= 2(13@f~996%j (2.7
0q; op; Op:i 0Og;
Applying this to §;(g, p) we find
- (f 20 071
5q, 5p, ap, 5q,
If we view 5 as a function of (g, p) and use the chain rule, we get
0H(q.p)_0H(@.P) s (% 0 0K gp_k_) (2715
op: ap: x \O0gx Opi Opx Opi ,
and
_ 5 _
0H(@p) _OHGD) s (6% 0, A %) 2715
0g; 0q; x \O0gx 5‘]; Opr 0q;
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It can similarly be established that

N 0K
pj=2 (a 0 {Pj» Gi} + {pj,pk}> (2.7.17)

If Egs. (2.7.16) and (2.7.17) are to reduce to the canonical equations (2.7.10) for
any #(q, p), we must have

{@> @y =0=1{D), P}

o (2.7.18)
{@» Pr} = O

%hen are the conditions to be satisfied by the new variables if they are to be
canonical. Notice that these constraints make no reference to the specific functional
form of 2 : the equations defining canonical variables are purely kinematical and
true for any #(q, p).

Exercise 2.7.3. Fill in the missing steps leading to Eq. (2.7.18) starting from Eq. (2.7.14).
Exercise 2.7.4. Verify that the change to a rotated frame
¥=xcos 6—ysin 8
$=xsin 8+ycos 8
Px=pxcos 8 —p,sin 0
p,=pxsin 6 +p,cos 6
is a canonical transformation.

Exercise 2.7.5. Show that the polar variables p=(x*+)%)""?, ¢= tan™'(¥/x),

XPx YDy

(x2+y2)1/2’ P¢=xPy—J’Px(=lz)

Po=6s P=

are canonical. (é, is the unit vector in the radial direction.)



96

CHAPTER 2

Exercise 2.7.6.* Verify that the change from the variables ry, 15, p;, p2 t0 Fenm, Pom, T,
and p is a canonical transformation. (See Exercise 2.5.4).

Exercise 2.7.7. Verify that
g=In(g~" sinp)
p=qcotp
is a canonical transformation.

Exercise 2.7.8. We would like to derive here Eq. (2.7.9), which gives the transformation
of the momenta under a coordinate transformation in configuration space:

q—=q(q1,...4x)

(1) Argue that if we invert the above equation to get g = ¢(g), we can derive the following
counterpart of Eq. (2.7.7):

. aq,- -
9= -9
7 0

(2) Show from the above that

32
og;/, 0g;

(3) Now calculate

- [az’(q, é)] _ [w’(q, q>]
P 3,

Use the chain rule and the fact that ¢g=¢(g) and not ¢(g, §) to derive Eq. (2.7.9).
(4) Verify, by calculating the PB in Eq. (2.7.18), that the point transformation is
canonical,

If (g, p) and (g, p) are both canonical, we must give them both the same status,
for Hamilton’s equations have the same appearance when expressed in terms of
either set. Now, we have defined the PB of two variables @ and ¢ in terms of (g, p)
as

dw 00 Ow do
———  |={e, G}q,p

W, o0; =
{ =2 dq; dp; 0p: 0Og;

i

Should we not also define a PB, {®, o}, for every canonical pair (g, p)? Fortunately
it turns out that the PB are invariant under canonical transformations:

{o,0},,={0, 0} (2.7.19)

(1t is understood that w and o are written as functions of § and p on the right-hand
side.)
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an alternate way to establish Eq. (2.7.19).
Consider first o = 3. We know that since (g, p) obey canonical equations,

o={w, #},,
But then (g, 7) also obey canonical equations, so
o={w, #}s

Now @ is some physical quantity such as the kinetic energy or the component
of angular momentum in some fixed direction, so its rate of change is independent
of the phase space coordinates used, i.e., @ is @, whether @ = w(q, p) or ©(q, p). So

{o,#},,={0, #}ip (2.7.20)

Having proved the result for what seems to be the special case o = 3, we now pull
the following trick. Note that nowhere in the derivation did we have to assume that
# was any particular function of g and p. In fact, Hamiltonian dynamics, as a
consistent mathematical scheme, places no restriction on 4. It is the physical require-
ment that the time evolution generated by s# coincide with what is actually observed,
that restricts # to be T+ V. Thus # could have been any function at all in the
preceding argament and in the result Eq. (2.7.20) (which is just a relation among
partial derivatives.) If we understand that # is not T+ V in this argument but an
arbitrary function, call it o, we get the desired result.

Active Transformations

So far, we have viewed the transformation

4=4(q,p)

p=p(q,p)

as passive: both (g, p) and (g, p) refer to the same point in phase space described
in two different coordinate systems. Under the transformation (g, p) — (g, p), the
numerical values of all dynamical variables are unchanged (for we are talking about
the same physical state), but their functional form is changed. For instance,
under a change from Cartesian to spherical coordinates, o(x,y,z)=
*+y+22 >0, 0, )=r". As mentioned earlier, we use the same symbol for a
given variable even if its functional dependence on the coordinates changes when we
change coordinates.

Consider now a restricted class of transformations, called regular trans-
formations, which preserve the range of the variables: (g, p) and (g, p) have the same
range. A change from one Cartesian coordinate to a translated or rotated one is
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regular (each variable goes from —oo to +o0 before and after), whereas a change to
spherical coordinates (where some coordinates are nonnegative, some are bounded
by 2=, etc.) is not.

A regular transformation (g, p) — (4, p) permits an alternate interpretation:
instead of viewing (g, p) as the same phase space point in a new coordinate system,
we may view it as a new point in the same coordinate system. This corresponds to
an active transformation which changes the state of the system. Under this change,
the numerical value of any dynamical variable (g, p) will generally change:
o (q,p) # (g, p), though its functional dependence will not: @(g, p) is the same
function w(gq, p) evaluated at the new point (g =4, p =p).

We say that o is invariant under the regular transformation (g, p) — (g, p) if

w(q, p)=w(q, p) (2.7.21)

(This equation has content only if we are talking about the active transformations,
for it is true for any w under a passive transformation.)

Whether we view the transformation (g, p) — (g, p) as active or passive, it is
called canonical if (g, p) obey Eq. (2.7.18). As we shall see, only regular canonical
transformations are physically interesting.

2.8. Symmetries and Their Consequences

Let us begin our discussion by examining what the word “symmetry” means in
daily usage. We say that a sphere is a very symmetric object because it looks the
same when seen from many directions. Or, equivalently, a sphere looks the same
before and after it is subjected to a rotation around any axis passing through its
center. A cylinder has symmetry too, but not as much: the rotation must be per-
formed around its axis. Generally then, the symmetry of an object implies its invari-
ance under some transformations, which in our examples are rotations.

A symmetry can be discrete or continuous, as illustrated by the example of a
hexagon and a circle. While the rotation angles that leave a hexagon unchanged
form a discrete set, namely, multiples of 60°, the corresponding set for a circle is a
continuum. We may characterize the continuous symmetry of the circle in another
way. Consider the identity transformation, which does nothing, i.e., rotates by 0° in
our example. This leaves both the circle and the hexagon invariant. Consider next
an infinitesimal transformation, which is infinitesimally “close” to the identity; in our
example this is a rotation by an infinitesimal angle &. The infinitesimal rotation
leaves the circle invariant but not the hexagon. The circle is thus characterized by
its invariance under infinitesimal rotations. Given this property, its invariance under
finite rotations follows, for any finite rotation may be viewed as a sequence of
infinitesimal rotations (each of which leaves it invariant).

It is also possible to think of functions of some variables as being symmetric in
the sense that if one changes the values of the variables in a certain way, the value
of the function is invariant. Consider for example

flx,p)=x"+y



If we make the following change

x—X¥=xcosf—ysin0
] (2.8.1)
y—jy=xsin 6+ycos 0

in the arguments, we find that f'is invariant. We say that fis symmetric under the
above transformation. In the terminology introduced earlier, the transformation in
question is continuous: its infinitesimal version is

3 X—>X=XCcos £—ysin E=X—YE
r. _ (2.8.2)
. y—oy=xsing+ycos e=xety (to order €)

Consider now the function #(q, p). There are two important dynamical conse-
quences that follow from its invariance under regular canonical transformations.

1. If # is invariant under the following infinitesimal transformation (which you
may verify is canonical, Exercise 2.8.2),

0
g—qi=qt S—gEfIi+ 04
(3p,-

(2.8.3)
_ og
pi—pi=pi— & —6 =p;+ 0p;

i

where g(g, p) is any dynamical variable, then g is conserved, i.e., a constant of motion.
One calls g the generator of the transformation.

Il If # is invariant under the regular, canonical, but not necessarily infinitesi-
mal, transformation (g, p) — (¢, p), and if (g(2), p(1)) is a solution to the equations
of motion, so is the transformed (translated, rotated, etc.) trajectory, (q(1), p(1)).

Let us now analyze these two consequences.

Consequence I. Let us first verify that g is indeed conserved if s is invariant
under the transformation it generates. Working to first order in ¢, if we equate the
change in # under the change of its arguments to zero, we get

# oA
sa=y (B X o2 )= g(o, ) =0 28.4)
oq, \ opi) 9 d
i 04 Di Di qi

But according to Eq. (2.7.2),
{g, #}=0— g is conserved (2.8.5)
(More generally, the response of any variable o to the transformation is

So=¢t{ow, g} (2.8.6)
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Note that dp and §¢q in Eq. (2.8.3) may also be written as PBs.) Consider as an
example, a particle in one dimension and the case g=p. From Eq. (2.8.3),

5x=s‘—;‘£=s i
pa 287
5p=—s—p=0
ox 1

which we recognize to be an infinitesimal translation. Thus the linear momentum p
is the generator of spatial translations and is conserved in a translationally invariant
problem. The physics behind this result is clear. Since p is unchanged in a translation,
so is T=p’/2m. Consequently V(x+ £)= V(x). But if the potential doesn’t vary from
point to point, there is no force and p is conserved.

Next consider an example from two dimensions with g=1/ = xp,— yp,. Here,

Sx=—ye (=s 0l )
Opx

dy=x¢e (=s%)
opy

(2.8.9)
Sp=—p,€ (=—s 61,)
Dx Dy ox
ol,
5Py=Px8 (:——g _l._)
oy

which we recognize to be an infinitesimal rotation around the z axis, [Eq. (2.8.2)].
Thus the angular momentum around the z axis is the generator of rotations around
that axis, and is conserved if # is invariant under rotations of the state around that
axis. The relation between the symmetry and the conservation law may be understood
in the following familiar terms. Under the rotation of the coordinates and the
momenta, |p| doesn’t change and so neither does T=|p|?/2m. Consequently, ¥ is a
constant as we go along any circle centered at the origin. This in turn means that
there is no force in the tangential direction and so no torque around the z axis. The
conservation of [, then follows.

Exercise 2.8.1. Show that p=p, + p,, the total momentum, is the generator of infintesimal
translations for a two-particle system.

Exercise 2.8.2.* Verify that the infinitesimal transformation generated by any dynamical
variable g is a canonical transformation. (Hint: Work, as usual, to first order in ¢.)

5

Exercise 2.8.3. Consider

_Btn
2m

H +%mw2(x2+y2)



whose invariance under the rotation of the coordinates and momenta leads to the conservation
of I,. But J# is also invariant under the rotation of just the coordinates. Verify that this is a
noncanonical transformation. Convince yourself that in this case it is not possible to write
8 as e{#, g} for any g, i.e., that no conservation law follows.

Exercise 2.8.4.* Consider # = 3p>+ 3x°, which is invariant under infinitesimal rotations
in phase space (the x—p plane). Find the generator of this transformation (after verifying that
it is canonical ). (You could have guessed the answer based on Exercise 2.5.2.).

The preceding analysis yields, as a by-product, a way to generate infinitesimal
canonical transformations. We take any function g(g, p) and obtain the transforma-
tion given by Eq. (2.8.6). (Recall that although we defined a canonical transformation
earlier, until now we had no means of generating one.) Given an infinitesimal canon-
ical transformation, we can get a finite one by “integrating” it. The following
examples should convince you that this is possible. Consider the transformation
generated by g=. We have

5q,'= €19, H
{ ) (2.8.9)
5p,~= S{pi, f}
But we know from the equations of motion that ¢;= {q;, #} etc. So
5q,‘: Sqi
(2.8.10)
5pi= gp',-

Thus the new point in phase space (g, p) = (¢ + 8¢, p+ 6p) obtained by this canonical
transformation of (g, p) is just the point to which (g, p) would move in an infinitesi-
mal time interval €. In other words, the motion of points in phase space under the
time evolution generated by 4 is an active canonical transformation. Now, you
know that by integrating the equations of motion, we can find (g, p) at any future
time, i.e., get the finite canonical transformation. Consider now a general case of
g##. We still have

| S5qi=¢lq, g)

(2.8.11)
opi= S{Pi,g}

y

Mathematically, these equations are identical to Eq. (2.8.9), with g playing the role
of the Hamiltonian. Clearly there should be no problem integrating these equations
for the evolution of the phase space points under the “fake” Hamiltonian g, and
fake “time” €. Let us consider for instance the case g =1/, which has units erg sec
and the corresponding fake time £= §0, an angle. The transformation of the coordi-
nates is

Ox=¢g{x,L}=—ey=(—60)y

2.8.12
Sy=(60)x ( )
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The fake equations of motion are ‘

dx dy
—=—y, = 2.8.13
primind x ( )1

Differentiating first with respect to 6, and using the second, we get

2
i%+x=0
do

and likewise,
2
Yy
a0

So
x=Acos 8+ Bsin 0
y=Csin 0+ Dcos 8

We find the constants from the “initial” (6 =0) coordinates and ‘‘velocities”: 4=
X0, D=yo, B=(0x/00)s=—yo, C=(0y/00)o=Xx,. Reverting to the standard nota-
tion in which (x, y), rather than (xo, yo), labels the initial point and (X, ), rather
than (x, y), denotes the transformed one, we may write the finite canonical trans-
formation (a finite rotation) as

X=xcos 0—ysin 0
(2.8.14)
y=xsin 0+ycos 0

Similar equations may be derived for p, and p, in terms of p, and p,.

Although a wide class of canonical transformations is now open to us, there
are many that aren’t. For instance, (g, p) — (—q, —p) is a discrete canonical trans-
formation that has no infinitesimal version. There are also the transformations that
are not regular, such as the change from Cartesian to spherical coordinates, which
have neither infintesimal forms, nor an active interpretation. We do not consider
ways of generating these.l

Consequence II. Let us understand the content of this result through an example
before turning to the proof. Consider a two-particle system whose Hamiltonian is
invariant under the translation of the entire system, i.e., both particles. Let an
observer S, prepare, at t=0, a state (x}, x3; p}, p3) which evolves as (x,(?), x2(¢);
(1), pa(1)) for some time and ends up in the state (x1, x3 ; pi , p3 ) at time 7T. Let

{ For an excellent and lucid treatment of this question and many other topics in advanced classical
mechanics, see H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Massachusetts (1950); E.
C. G. Sudharshan and N. Mukunda, Classical Dynamics: A Modern Perspective, Wiley, New York
(1974).



—

us call the final state the outcome of the experiment conducted by S,. We are told
that as a result of the translational invariance of #, any other trajectory that is
related to this by an arbitrary translation a is also a solution to the equations of
*;notion. In this case, the initial state, for example, is (x1+a, x3+a; p, p3). The final
state and all intermediate states are likewise displaced by the same amount. To an
lobserver Sp, displaced relative to S, by an amount a, the evolution of the second
system will appear to be identical to what S, saw in the first. Assuming for the sake
of this argument that Sp had in fact prepared the second system, we may say that
a given experiment and its translated version will give the same result (as seen by
the observers who conducted them) if & is translationally invariant.

The physical idea is the following. For the usual reasons, translational invariance
of o# implies the invariance of V(x;, x;). This in turn means that V(x;, x»)=
L#(x1—x,). Thus each particle cares only about where the other is relative to it, and
not about where the system as a whole is in space. Consequently the outcome of the
experiment is not affected by an overall translation.

Consequence II is just a generalization of this result to other canonical trans-
formations that leave # invariant. For instance, if 5 is rotationally invariant, a
given experiment and its rotated version will give the same result (according to the
observers who conducted them).

Let us now turn to the proof of the general result.

Proof. Imagine a trajectory (g(?), p(t)) in phase space that satisfies the equations
of motion. Let us associate with it an image trajectory, (g(t), p(r)), which is obtained
by transforming each point (g, p) to the image point (g, p) by means of a regular
canonical transformation. We ask if the image point moves according to Hamilton’s
equation of motion, i.e., if

0#(q, p) . __0#(q,DP)

— = = (2.8.15)
op; ! 0q;

é].:

£

if # is invariant under the transformation (g, p) — (g, p). Now §;(q, p), like any
dynamical variable w(q, p), obeys

4=1{g, # (4, P)}ar (2.8.16)

If (g, p) — (g, P) were a passive canonical transformation, we could write, since the
PB are invariant under such a transformation,

s o _ o 0#(q, P)

4={2, #(9: P)}er=1{4)> f(q,p)}qf——a—ﬁ—
j

But it is an active transformation. However, because of the symmetry of #, i.e.,

H(q, p)=#1(q, p), we can go through the very same steps that led to Eq. (2.7.16)
from Eq. (2.7.14) and prove the result. If you do not believe this, you may verify it
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by explicit computation using #'(g, p)= #(q, p). A similar argument shows that

. __0#(q,p)

- 4 (2.8.17
0g,

7

So the image point moves according to Hamilton’s equations. Q.E.D,

Exercise 2.8.5. Why is it that a noncanonical transformation that leaves # invariant
does not map a solution into another? Or, in view of the discussions on consequence 11, why
is it that an experiment and its transformed version do not give the same result when the
transformation that leaves 5 invariant is not canonical? It is best to consider an example.
Consider the potential given in Exercise 2.8.3. Suppose I release a particle at (x=a, y=()
with (p,=b, p,=0) and you release one in the transformed state in which (x=0, y=a) and
(p.=b, p,=0), i.e., you rotate the coordinates but not the momenta. This is a noncanonical
transformation that leaves # invariant. Convince yourself that at later times the states of the
two particles are not related by the same transformation. Try to understand what goes wrong
in the general case.

As you go on and learn quantum mechanics, you will see that the symmetri
of the Hamiltonian have similar consequences for the dynamics of the system.

A Useful Relation Between .S and E

We now prove a result that will be invoked in Chapter 16:

0Sa (xs, tr; x;, ti)=—]f(t )
oty !

where Sy (xr, t/; x;, t;) is the action of the classical path from x;, ¢; to x/, ¢, and )‘!
is the Hamiltonian at the upper end point. Since we shall be working with problems
where energy is conserved we may write

0Sa (xr, tr; xi, 1;) _
oty

~E (2.8.18

where E is the conserved energy, constant on the whole trajectory.
At first sight you may think that since

i
Sd:J F dt



n(t)
Xq(t)

Figure 2.5. The upper trajectory takes time ¢ while the lower

takes 1+ At.

tt+ AL

the right side must equal £ and not —E. The explanation requires Fig. 2.5 wherein

we have set x;=1,=0 for convenience.

The derivative we are computing is governed by the change in action of the
classical path due to a change in travel by At holding the end points x; and x fixed.
From the figure it is clear that now the particle takes a different classical trajectory

x()=xq()+n(t) with n(0)=0.

so that the total change in action comes from the difference in paths between ¢=0
and r=t,as well as the entire action due to the extra travel between t,and 1+ At

Only the latter is given £ Az. The correct answer is then

ir
5S01=J [6_5{ n(t) +ai.[ ﬁ(t):l dt+ 2L(t) At
o LOX ox

[ i
=JI(_£ %+5ﬁ) n(t)dt+J ﬁ[aﬁ T](t)}dt‘f'g(tf)At
o\ dtox  ox/_ o drlox

=0+ 6£ n(n| +2L(1) Ar.
ox

i

It is clear from the figure that 1(z,)=—x(t,) At so that

k 5S=[—2;(_[3&+££] At=—H(t;) At

X
. # iy

from which the result follows.

Exercise 2.8.6. Show that 8Sa/0x,=p(ty).

Exercise 2.8.7. Consider the harmonic oscillator, for which the general solution is

x(f)= A cos ot + B sin wt.
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106 Express the energy in terms of 4 and B and note that it does not depend on time. Now choo
CHAPTER 2 A and B such that x(0) = x, and x(7)=x,. Write down the energy in terms of x,, x, and
Show that the action for the trajectory connecting x, and x; is |

mo
Sa(x1, %, T)=—"7—
2 sin

p (x5 +x3) cos T —2x,x,].
®

Verify that 6S.,/07=—E.



All Is Not Well with
Classical Mechanics

It was mentioned in the Prelude that as we keep expanding our domain of observa-
tions we must constantly check to see if the existing laws of physics continue to
explain the new phenomena, and that, if they do not, we must try to find new laws
that do. In this chapter you will get acquainted with experiments that betray the
inadequacy of the classical scheme. The experiments to be described were never
performed exactly as described here, but they contain the essential features of the
actual experiments that were performed (in the first quarter of this century) with
none of their inessential complications.

3.1. Particles and Waves in Classical Physics

There exist in classical physics two distinct entities: particles and waves. We
have studied the particles in some detail in the last chapter and may summarize their
essential features as follows. Particles are localized bundles of energy and momentum.
They are described at any instant by the state parameters g and 4 (or g and p). These
parameters evolve in time according to some equations of motion. Given the initial
values g(#;) and 4(¢,) at time ¢;, the trajectory q(t) may be deduced for all future
times from the equations of motion. A wave, in contrast, is a disturbance spread over
space. It is described by a wave function y (r, t) which characterizes the disturbance at
the point r at time ¢,

In the case of sound waves, v is the excess air pressure above the normal, while
in the case of electromagnetic waves, y can be any component of the electric field
vector E. The analogs of ¢ and 4§ for a wave are y and y at each point r, assuming
y obeys a second-order wave equation in time, such as

1 Py
¢ o

Vy =

107
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(a) A (b)

s J )Y
} N7 +Xmin
‘: Figure 3.1. (a) When a wave y=¢ ‘®~

S5 is incident on the screen with either slit §
or S, open, the intensity patterns /; and I,
respectively, are measured by the row of

{w,k)—= I, detectors on AB. (b) With both slits open,
r’y o d— I,#L+1, the pattern I;., is observed. Note that
X I, +»#1,+ L. This is called interference.

=

which describes waves propagating at the speed of light, c. Given y(r, 0) and y(r, ()
one can get the wave function y(r, f) for all future times by solving the wave
equation.

Of special interest to us are waves that are periodic in space and time, called
plane waves. In one dimension, the plane wave may be written as

vix,1)=A4 exp[i(zf x—z?nt)j'zA explig] (3.1.1)

At some given time ¢, the wave is periodic in space with a period A, called its
wavelength, and likewise at a given point x, it is periodic in time, repeating itself
every T seconds, T being called the time period. We will often use, instead of A and
T, the related quantities k=27 /4 called the wave number and w =27 /T called the
(angular) frequency. In terms of the phase ¢ in Eq. (3.1.1), £k measures the phase
change per unit length at any fixed time ¢, while @ measures the phase change per
unit time at any fixed point x. This wave travels at a speed v= @ /k. To check this
claim, note that if we start out at a point where ¢ =0 and move along x at a rate
x={(w/k)t, ¢ remains zero. The overall scale A up front is called the amplitude. For
any wave, the intensity is defined to be =|y|*. For a plane wave this is a constant
equal to |4|>. If w describes an electromagnetic wave, the intensity is a measure of
the energy and momentum carried by the wave. [Since the electromagnetic field i
real, only the real part of y describes it. However, time averages of the energy an
momentum flow are still proportional to the intensity (as defined above) in the
of plane waves.]

Plane waves in three dimension are written as

fkr=on o =|k|v (3.12

where each component k; gives the phase changes per unit length along the ith axis,
One calls k the wave vector.}

p(r, t)=A4¢

3.2. An Experiment with Waves and Particles (Classical)

Waves exhibit a phenomenon called interference, which is peculiar to them and,
is not exhibited by particles described by classical mechanics. This phenomenon i
illustrated by the following experiment (Fig. 3.1a). Let a wave y=4 '® ™"

1 Unfortunately we also use k to denote the unit vector along the z axis. It should be clear from
context what it stands for.



. {a) I, ‘Ax (p) A
s' 1 0X2
:l é 1

Figure 3.2. (a) Intensity pattern _
when S, or S, is open, due to a s N st ox,
beam of incident particles. (b) The
pattern with both slits open accord- I
ing to classical mechanics (/;+,= 2 8
L+h). B L“hitIz

incident normally on a screen with slits S; and S,, which are a distance a apart. At
a distance d parallel to it is a row of detectors that measures the intensity as a
function of the position x measured along 4B.

If we first keep only S| open, the incident wave will come out of S| and propagate
radially outward. One may think of .S) as the virtual source of this wave y,, which
has the same frequency and wavelength as the incident wave. The intensity pattern
I,=|y|* is registered by the detectors. Similarly if S is open instead of S, the wave
w2 produces the pattern I, =|w,|. In both cases the arrival of energy at the detectors
is a smooth function of x and .

Now if both S, and S, are opened, both waves v, and y, are present and
produce an intensity pattern 1,4, =}y, + v,|>.

The interesting thing is that I).,#1I+ I, but rather the interference pattern
shown in Fig. 3.1b. The ups and downs are due to the fact that the waves y, and
v, have to travel different distances d, and d; to arrive at some given x (see Fig.
3.1a) and thus are not always in step. In particular, the maxima correspond to the
case d,~dy=nA (n is an integer), when the waves arrive exactly in step, and the
minima correspond to the case d, —d, =(2n+1)4/2, when the waves are exactly out
of step. In terms of the phases ¢; and ¢, ¢2(x)—~ ¢$1(x)=2n7 at a maximum and
$2(x)— ¢1(x)=(2n+ 1)z at a minimum. One can easily show that the spacing Ax
between two adjacent maxima is Ax = Ad/a.

The feature to take special note of is that if x is an interference minimum,
there is more energy flowing into xmi, With just one slit open than with both. In
other words, the opening of an extra slit can actually reduce the energy flow into
Xmin «

Consider next the experiment with particles (Fig. 3.2a). The source of the inci-
dent plane waves is replaced by a source of particles that shoots them toward the
screen with varying directions but fixed energy. Let the line AB be filled with an
array of particle detectors. Let us define the intensity /(x) to be the number of
particles arriving per second at any given x. The patterns with S; or S; open are
shown in (Fig. 3.2a). These look very much like the corresponding patterns for the
wave. The only difference will be that the particles arrive not continuously, but in a
staccato fashion, each particle triggering a counter at some single point x at the time
of arrival. Although this fact may be obscured if the beam is dense, it can be easily
detected as the incident flux is reduced.

What if both S and S, are opened? Classical mechanics has an unambiguous
prediction: 1, =1+ L,. The reasoning is as follows: each particle travels along a
definite trajectory that passes via Sy or S to the destination x. To a particle headed
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for S), it is immaterial whether S, is open or closed. Being localized in space it has
no way of even knowing if S, is open or closed, and thus cannot respond to it in
any way. Thus the number coming via Sy to x is independent of whether S, is open
or not and vice versa. It follows that /,,,=1+ 1, (Fig. 3.2b).

The following objection may be raised: although particles heading for S are
not aware that S, is open, they certainly can be deflected by those coming out of
S,, if, for instance, the former are heading for x, and the latter for x, (see Fig. 3.1a).

This objection can be silenced by sending in one particle at a time. A given
particle will of course not produce a pattern like I, or I, by itself, it will go to some
point x. If, however, we make a histogram, the envelope of this histogram, after
many counts, will define the smooth functions I;, I, and [ +,. Now the conclusion
I .»=1,+ L is inevitable.

This is what classical physics predicts particles and waves will do in the double-
slit experiment.

3.3. The Double-Slit Experiment with Light

Consider now what happens when we perform the following experiment to check
the classical physics notion that light is an electromagnetic wave phenomenon.

We set up the double slit as in Fig. 3.1a, with a row of light-sensitive meters
along AB and send a beam y =4 ¢'**~“? in a direction perpendicular to the screen.
(Strictly speaking, the electromagnetic wave must be characterized by giving the
orientation of the E and B vectors in addition to @ and k. However, for a plane
wave, B is uniquely fixed by E. If we further assume E is polarized perpendicular to
the page, this polarization is unaffected by the double slit. We can therefore suppress
the explicit reference to this constant vector and represent the field as a scalar function
w.) We find that with the slits open one at a time we get patterns /; and I, and
with both slits open we get the interference pattern I, as in Figs. 3.1a and 3.1b.
(The interference pattern is of course what convinced classical physicists that light
was a wave phenomenon.) The energy arrives at the detectors smoothly and continu-
ously as befitting a wave.

Say we repeat the experiment with a change that is expected (in classical physics)
to produce no qualitative effects. We start with .S; open and cut down the intensity.
A very strange thing happens. We find that the energy is not arriving continuously,
but in sudden bursts, a burst here, a burst there, etc. We now cut down the intensity
further so that only one detector gets activated at a given time and there is enough
of a gap, say a millisecond, between counts. As each burst occurs at some x, we
record it and plot a histogram. With enough data, the envelope of the histogram
becomes, of course, the pattern /;. We have made an important discovery: light
energy is not continuous—it comes in bundles. This discrete nature is obscured in
intense beams, for the bundles come in so fast and all over the line AB, that the
energy flow seems continuous in space and time.

We pursue our study of these bundles, called photons, in some detail and find
the following properties ;

1. Each bundle carries the same energy E.
2. Each bundle carries the same momentum p.



3. E=pc. From the famous equation E° = p*c*+ m’c*, we deduce that these bundles
are particles of zero mass.
4. If we vary the frequency of the light source we discover that

E=tlw (3.3.1)
p=rk (3.3.2)

where i=h/2n is a constant. The constant A is called Planck’s constant, and has the
dimensions of erg sec, which is the same as that of action and angular momentum.
Its value is

—h—=ﬁ:10"27 erg sec (3.3.3)
27

For those interested in history, the actual experiment that revealed the granular
nature of light is called the photoelectric effect. The correct explanation of this experi-
ment, in terms of photons, was given by Einstein in 1905.

That light is made of particles will, of course, surprise classical physicists but
will not imply the end of classical physics, for physicists are used to the idea that
phenomena that seem continuous at first sight may in reality be discrete. They will
cheerfully plunge into the study of the dynamics of the photons, trying to find the
equations of motion for its trajectory and so on. What really undermines classical
physics is the fact that if we now open both slits, still keeping the intensity so low
that only one photon is in the experimental region at a given time, and watch the
histogram take shape, we won’t find that I, ., equals I; + I, as would be expected of
particles, but is instead an interference pattern characteristic of wave number k.
This result completely rules out the possibility that photons move in well-defined
trajectories like the particles of classical mechanics—for if this were true, a photon
going in via S; should be insensitive to whether S, is open or not (and vice versa),
and the result /,.,=1; + I, is inescapable! To say this another way, consider a point
Xmin Which is an interference minimum. More photons arrive here with either S; or
S open than with both open. If photons followed definite trajectories, it is incompre-
hensible how opening an extra pathway can reduce the number coming to x,. Since
we are doing the experiment with one photon at a time, one cannot even raise the
improbable hypothesis that photons coming out of S; collide with those coming out
of 5, to modify (miraculously) the smooth pattern I, + I; into the wiggly interference
pattern.

From these facts Born drew the following conclusion: with each photon is
associated a wave v, called the probability amplitude or simply amplitude, whose
modulus squared | w(x)|” gives the probability of finding the particle at x. [Strictly
speaking, we must not refer to | w(x)|* as the probability for a given x, but rather
as the probability density at x since x is a continuous variable. These subtleties can,
however, wait.] The entire experiment may be understood in terms of this hypothesis
as follows. Every incoming photon of energy E and momentum p has a wave function
y associated with it, which is a plane wave with @ =E/#f and k=p/#. This wave
interferes with itself and forms the oscillating pattern |y (x)|* along 4B, which gives
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the probability that the given photon will arive at x. A given photon of course arrives1
at some definite x and does not reveal the probability distribution. If, however, we
wait till several photons, all described by the same y, have arrived, the number at
any x will become proportional to the probability function |w(x)|>. Likewise, if an
intense (macroscopic) monochromatic beam is incident, many photons, all described|
by the same wave and hence the same probability distribution, arrive at the same
time and all along the line AB. The intensity distribution then assumes the shape of|
the probability distribution right away and the energy flow seems continuous and in
agreement with the predictions of classical electromagnetic theory.

The main point to note, besides the probability interpretation, is that a wave
is associated not with a beam of photons, but with each photon. If the beam i
monochromatic, every photon is given by the same y and the same probability
distribution. A large ensemble of such photons will reproduce the phenomena
expected of a classical electromagnetic wave y and the probabilistic aspect will be
hidden.

3.4. Matter Waves (de Broglie Waves)

That light, which one thought was a pure wave phenomenon, should consist o
photons, prompted de Broglie to conjecture that entities like the electron, generally,
believed to be particles, should exhibit wavelike behavior. More specifically, he con-
jectured, in analogy with photons, that particles of momentum p will produce an
interference pattern corresponding to a wave number k =p/# in the double-slit experi-
ment. This prediction was verified for electrons by Davisson and Germer, shortly
thereafter. It is now widely accepted that all particles are described by probability
amplitudes w(x), and that the assumption that they move in definite trajectories is
ruled out by experiment.

But what about common sense, which says that billiard balls and baseballs
travel along definite trajectories? How did classical mechanics survive for three cen-
turies? The answer is that the wave nature of matter is not apparent for macroscopic
phenomena since 7 is so small. The precise meaning of this explanation will become
clear only after we fully master quantum mechanics. Nonetheless, the following
example should be instructive. Suppose we do the double-slit experiment with pellets
of mass | g, moving at 1 cm/sec. The wavelength associated with these particles is

_2m_h

="—=-~10"*cm
p

which is 107" times smaller than the radius of the proton! For any reasonable valu
of the parameters a and d (see Fig. 3.1b), the interference pattern would be so den
in x that our instruments will only measure the smooth average, which will o
I . =1+ 1, as predicted classically.

3.5. Conclusions

The main objective of this chapter was to expose the inadequacy of classi
physics in explaining certain phenomena and, incidentally, to get a glimpse of wh:



the new (quantum) physics ought to look like. We found that entities such as the
electron are particles in the classical sense in that when detected they seem to carry
all their energy, momentum, charge, etc. in localized form; and at the same time
they are not particlelike in that assuming they move along definite trajectories leads
to conflict with experiment. It appears that each particle has associated with it a
wave function w(x, 1), such that | w(x, 1)|? gives the probability of finding it at a
point x at time 7. This is called wave-particle duality.

The dynamics of the particle is then the dynamics of this function w(x, ) or, if
we think of functions as vectors in an infinite-dimensional space, of the ket lw(t)).
In the next chapter the postulates of quantum theory will define the dynamics in
terms of | w(#)). The postulates, which specify what sort of information is contained
in |w()) and how |y (1)) evolves with time, summarize the results of the double-
slit experiment and many others not mentioned here. The double-slit experiment was
described here to expose the inadequacy of classical physics and not to summarize
the entire body of experimental results from which all the postulates could be inferred.
Fortunately, the double-slit experiment contains most of the central features of the
theory, so that when the postulates are encountered in the next chapter, they will
appear highly plausible.
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he Postulates—a
General Discussion

Having acquired the necessary mathematical training and physical motivation, you
are now ready to get acquainted with the postulates of quantum mechanics. In this
chapter the postulates will be stated and discussed in broad terms to bring out
the essential features of quantum theory. The subsequent chapters will simply be
applications of these postulates to the solution of a variety of physically interesting
fproblems. Despite your preparation you may still find the postulates somewhat
abstract and mystifying on this first encounter. These feelings will, however, dis-
appear after you have worked with the subject for some time,

'E4.1. The Postulatest

The following are the postulates of nonrelativistic quantum mechanics. We
consider first a system with one degree of freedom, namely, a single particle in one
space dimension. The straightforward generalization to more particles and higher
dimensions will be discussed towards the end of the chapter. In what follows, the
quantum postulates are accompanied by their classical counterparts (in the Hamil-
tonian formalism) to provide some perspective.

i

Classical Mechanics Quantum Mechanics
I. The state of a particle at any given 1. The state of the particle is represen-
time is specified by the two variables ted by a vector [y(¢)) in a Hilbert
x(t) and p(?), 1.e., as a point in a two- space.

dimensional phase space.

II. Every dynamical variable @ is a II. Theindependent variables x and p of
function of x and p: = w(x, p). classical mechanics are represented

*$ Recall the discussion in the Preface regarding the sense in which the word is used here.
t
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CHAPTER 4 with the following matrix elements
in the eigenbasis of X1
x| XIx>=x6(x—X")
{x|P|x"y=—ih8"(x—x")
The operators corresponding to

dependent variables «(x,p) are
given Hermitian operators

QX, P)=w(x—X, p—P)§

IIL. If the particle is in a state given by IIL. If the particle is in a state |y ), meas-'

x and p, the measurement| of the urement' of the variable (corre-
variable o will yield a value w(x, p). sponding to) £ will yield one of the
The state will remain unaffected. eigenvalues @ with probability

P(w)x|{w|wD|*. The state of the
system will change from |y to |@)
as a result of the measurement.

IV. The state variables change with time IV. The state vector |w(r)) obeys the

according to Hamilton’s equations: Schrodinger equation
o d
X=— h— ()= t
o I dtlw()) Hly(1))
__0H where H(X, P)=#(x>X, p—P)is
P the quantum Hamiltonian operator

and o is the Hamiltonian for the
corresponding classical problem.

4.2. Discussion of Postulates I-III

The postulates (of classical and quantum mechanics) fall naturally into two
sets: the first three, which tell us how the system is depicted at a given time, and the
last, which specifies how this picture changes with time. We will confine our attention
to the first three postulates in this section, leaving the fourth for the next.

The first postulate states that a particle is described by a ket |y) in a Hilbert.
space which, you will recall, contains proper vectors normalizable to unity as well

1 Note that the X operator is the same one discussed at length in Section 1.10. Likewise P="#K, whe
K was also discussed therein. You may wish to go over that section now to refresh your memory.

§ By this we mean that € is the same function of X and P as @ is of x and p.

|| That is, in an ideal experiment consistent with the theory. It is assumed you are familiar with the id
classical measurement which can determine the state of the system without disturbing it in any way.
discussion of ideal quantum measurements follows.



improper vectors, normalizable only to the Dirac delta functions.f Now, a ket in
such a space has in general an infinite number of components in a given basis. One
wonders why a particle, which had only two independent degrees of freedom, x and
p, in classical mechanics, now needs to be specified by an infinite number of variables.
What do these variables tell us about the particle? To understand this we must go
on to the next two postulates, which answer exactly this question. For the present
let us note that the double-slit experiment has already hinted to us that a particle
such as the electron needs to be described by a wave function y(x). We have seen
in Section 1.10 that a function f(x) may be viewed as a ket | /) in a Hilbert space.
The ket |y) of quantum mechanics is none other than the vector representing the
probability amplitude y(x) introduced in the double-slit experiment.

When we say that |y ) is an element of a vector space we mean that if |y and
|w"> represent possible states of a particle so does |y )+ Blw'>. This is called the
principle of superposition. The principle by itself is not so new: we know in classical
physics, for example, that if f(x) and g(x) {with f(0)=f(L)=g(0)=g(L)=0] are
two possible displacements of a string, so is the superposition af(x) + fg(x). What
is new is the interpretation of the superposed state ¢|y )+ f|y’'>. In the case of the
string, the state af+ fg has very different attributes from the states fand g: it will
look different, have a different amount of stored elastic energy, and so on. In quantum
theory, on the other hand, the state a|w >+ |y’ will, loosely speaking, have attri-
butes that sometimes resemble that of |y ) and at other times those of |y'). There
is, however, no need to speak loosely, since we have postulates II and III to tell us
exactly how the state vector | y) is to be interpreted in quantum theory. Let us find
out.

In classical mechanics when a state (x, p) is given, one can say that any dynam-
ical variable @ has a value w(x, p), in the sense that if the variable is measured the
result @(x, p) will obtain. What is the analogous statement one can make in quantum
mechanics given that the particle is in a state |w)»? The answer is provided by
Postulates IT and I1I, in terms of the following steps:

Step 1. Construct the corresponding quantum operator Q=w(x->X, p—P),
where X and P are the operators defined in postulate II.

Step 2. Find the orthonormal eigenvectors |@,) and eigenvalues @; of Q.

Step 3. Expand |y ) in this basis:

* Iw>=}:|wf><wf|w>

¥

Step 4. The probability P(@) that the result @ will obtain is proportional to
the modulus squared of the projection of |y ) along the eigenvector |@), that is
P(o)x|{@|w)>. In terms of the projection operator P,=|w){w],
Pl@)clKo|yd*={y| 0 (o] y)={y|Pa|y) =< y|PuPuly) =<(Puy | Poy).

There is a tremendous amount of information contained in these steps. Let us
note, for the present, the following salient points.

{ The status of the two classes will be clarified later in this chapter.
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(1) The theory makes only probabilistic predictions for the result of a measure-
ment of Q. Further, it assigns (relative) probabilities only for obtaining some eigen
value @ of Q. Thus the only possible values of Q are its eigenvalues. Since postulat
IT demands that Q be Hermitian, these eigenvalues are all real.

(2) Since we are told that P(w;)oc|{w,| w)|? the quantity |{w;| w>|* is onl
the relative probability. To get the absolute probability, we divide |{®;| y >|* by th
sum of all relative probabilities:

_ [{ @ 'I/>|2 =l<a’il'lf>|2

Plw)= (4.2
Y Kol wdl® Cylw)
It is clear that if we had started with a normalized state
2
lyD>=-—""5;
ylyyt?
we would have had
P(w) =<y (4.2.2)

If |y) is a proper vector, such a rescaling is possible and will be assum
hereafter. The probability interpretation breaks down if | ) happens to be one o
the improper vectors in the space, for in this case {y| v > =0(0) is the only sensible
normalization. The status of such vectors will be explained in Example 4.2.2 below.

Note that the condition {y | > =1 is a matter of convenience and not a physical
restriction on the proper vectors. (In fact the set of all normalized vectors does not
even form a vector space. If |y and |y') are normalized, then an arbitrary linear
combination, a|y >+ f|y'>, is not.)

Note that the relative probability distributions corresponding to the states [y)|
and a|y), when they are renormalized to unity, reduce to the same absolute probabil-
ity distribution. Thus, corresponding to each physical state, there exists not one
vector, but a ray or “direction” in Hilbert space. When we speak of the state of the
particle, we usually mean the ket |y) with unit norm. Even with the condition
{w|w)>=1, we have the freedom to multiply the ket by a number of the form "
without changing the physical state. This freedom will be exploited at times to make
the components of | ) in some basis come out real.

(3) If |w) is an eigenstate |®,), the measurement of Q is guaranteed to yield
the result @,. A particle in such a state may be said to have a value o, for Q in the
classical sense.

(4) When two states |w,) and |@;) are superposed to form a (normalized)
state, such as

_alo+Blo)

Y e 1B

one gets the state, which upon measurement of Q, can yield either @, or w, with
probabilities |a|?/(Ja|>+|B]?) and | B1*/(ja|*+ | BI?), respectively. This is the peculiar



a) b) c)

pre o PInD

*Migure 4.1. (a) The normalized ket in V3(R) representing the state of the particle. (b) The Q basis, |@:),
jo2), and |@3). (€) The Q and the A bases. To get the statistical information on a variable, we find the
eigenvectors of the corresponding operator and project |y on that basis.

consequence of the superposition principle in quantum theory, referred to earlier. It
has no analog in classical mechanics. For example, if a dynamical variable of the
string in the state af+ Bg is measured, one does not expect to get the value corre-
sponding to f some of the time and that corresponding to g the rest of the time;
instead, one expects a unique value generally distinct from both. Likewise, the
functions fand af (a real) describe two distinct configurations of the string and are
not physically equivalent.

(5) When one wants information about another variable A, one repeats the
whole process, finding the eigenvectors |4, and the eigenvalues A;. Then

i P()=I<A1 I

The bases of Q and A will of course be different in general. In summary, we have a
single ket |y) representing the state of the particle in Hilbert space, and it contains
the statistical prediction for all observables. To extract this information for any
observable, we must determine the eigenbasis of the corresponding operator and find
the projection of |y along all its eigenkets.

(6) As our interest switches from one variable Q, to another, A, so does our
interest go from the kets |@), to the kets |1). There is, however, no need to change
the basis each time. Suppose for example we are working in the Q basis in which

|w>=Z|w,~><wi|w>

and P(w;)=|{w;| w)|%. If we want P(4;) we take the operator A (which is some
given matrix with elements A;= (w; Al@,>); find its eigenvectors |A;> (which are
column vectors with components {®;| A,»), and take the inner product {A4;| y> in
this basis:

Al yy =Y il op Loyl v

Example 4.2.1. Consider the following example from a fictitious Hilbert space
V3(R) (Fig. 4.1). In Fig. 4.1a we have the normalized state |y ), with no reference
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to any basis. To get predictions on Q, we find its eigenbasis and express the state
vector |y) in terms of the orthonormal eigenvectors |@,), |®,), and |@;) (Fig
4.1b). Let us suppose

1 | |
|w>:51601>+51602>+5ﬁ5|603>

This means that the values w;, ®,, and w; are expected with probabilities %, i
and 3, respectively, and other values of @ are impossible. If instead |y ) were some
eigenvector, say |@,), then the result @; would obtain with unit probability. Only a
particle in a state |y ) =]w;> has a well-defined value of Q in the classical sense. If
we want P(4,;) we construct the basis |1,), [A1>), and |43, which can in general be
distinct from the Q basis. In our example (Fig. 4.1¢) there is just one common
eigenvector | @3> =|13). a

Returning to our main discussion, there are a few complications that could arisj
as one tries to carry out the steps 1-4. We discuss below the major ones and how
they are to be surmounted. ‘

l

Complication 1: The Recipe = w(x—X, p—P) Is Ambiguous. If, for example
o = xp, we don’t know if Q= XP or PX since xp = px classically. There is no universal
recipe for resolving such ambiguities. In the present case, the rule is to use the
symmetric sum: Q=(XP+ PX)/2. Notice incidentally that symmetrization also
renders Q Hermitian. Symmetrization is the answer as long as Q does not involve
products of two or more powers of X with two or more powers of P. If it does, only
experiment can decide the correct prescription. We will not encounter such cases in
this book. :

Complication 2: The Operator §2 Is Degenerate. Let us say w,= w,= ®. Wh
is P(w) in this case? We select some orthonormal basis (@, 1> and |w, 2) in
eigenspace V,, with eigenvalue @. Then

P(o)=[<o, L|y)|*+ <o, 2| )|
which is the modulus squared of the projection of | ) in the degenerate eigenspa
This is the result we will get if we assume that @, and o, are infintesimally distin
and ask for P(®, or @,). In terms of the projection operator for the eigenspace,
P,=|w, 1>{o, 1] +|0, 2){o, 2| (423
we have

P(o) = y|Poly)>=L{Puy | Poy) (4.2.3

In general, one can replace in Postulate 111

P(o)ocy|P,lw)



—
where P, is the projection operator for the eigenspace with eigenvalue @. Then
postulate IIT as stated originally would become a special case in which there is no
degeneracy and each eigenspace is simply an eigenvector.

In our example from V3(R), if o1=w,=o (Fig. 4.1b) then P(w) is the square
%of the component of |y in the “x y” plane.

Complication 3: The Eigenvalue Spectrum of §2 Is Continuous. In this case one
expands |y ) as

Iw>=l[|w><wlw>dw

; One expects that as @ varies continuously, so will (@ | y), that is to say, one expects
(| y) to be a smooth function y(@). To visualize this function one introduces an

auxiliary one-dimensional space, called the  space, the points in which are labeled
. by the coordinate @. In this space y() will be a smooth function of @ and is called

the wave function in the @ space. We are merely doing the converse of what we did

in Section 1.10 wherein we started with a function f(x) and tried to interpret it as
! the components of an infinite-dimensional ket |y} in the |x) basis. As far as the
state vector |y is concerned, there is just one space, the Hilbert space, in which it
resides. The @ space, the A space, etc. are auxiliary manifolds introduced for the
purpose of visualizing the components of the infinite-dimensional vector |y in the
Q basis, the A basis, and so on. The wave function y(w) is also called the probability
amplitude for finding the particle with Q=w.

Can we interpret |[{@]| w>|* as the probability for finding the particle with a
value o for Q2 No. Since the number of possible values for o is infinite and the
total probability is unity, each single value of @ can be assigned only an infinitesimal
probability. One interprets P(o)=|{o| w>|? to be the probability density at o, by
which one means that P(®) do is the probability of obtaining a result between @
and @ + dw. This definition meets the requirement that the total probability be unity,

since

jP(w)dw=jl<wl w>l2dw=j<!//lw><wl y) do

¥ — Ty =y =1 (42.4)

If <y|y)>=35(0) is the only sensible normalization possible, the state cannot be
normalized to unity and P(@) must be interpreted as the relative probability density.
We will discuss such improper states later.

An important example of a continuous spectrum is that of X, the operator
cotresponding to the position x. The wave function in the X basis (or the x space),
y(x), is usually referred to as just the wave function, since the X basis is almost
always what one uses. In our discussions in the last chapter, |w(x)|* was referred to
as the probability for finding the particle af a given x, rather than as the probability
density, in order to avoid getting into details. Now the time has come to become
precise!
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Earlier on we were wondering why it was that a classical particle defined by
just two numbers x and p now needs to be described by a ket which has an infinite
number of components. The answer is now clear. A classical particle has, at any
given time, a definite position. One simply has to give this value of x in specifying
the state. A quantum particle, on the other hand, can take on any value of x upon;
measurement and one must give the relative probabilities for all possible outcomes.
This is part of the information contained in y(x) = (x| y), the components of |y)}
in the X basis. Of course, in the case of the classical particle, one needs also to specify '
the momentum p as well. In quantum theory one again gives the odds for getting
different values of momenta, but one doesn’t need a new vector for specifying this;
the same ket | > when expanded in terms of the eigenkets | p> of the momentum
operator P gives the odds through the wave function in p space, y(p)={p{y).

Complication 4: The Quantum Variable §2 Has No Classical Counterpart. Even
“point” particles such as the electron are now known to carry “spin,” which is an
internal angular momentum, that is to say, angular momentum unrelated to their
motion through space. Since such a degree of freedom is absent in classical mechanics,
our postulates do not tell us which operator is to describe this variable in quantum
theory. As we will see in Chapter 14, the solution is provided by a combination of
intuition and semi-classical reasoning. It is worth bearing in mind that no matter
how diligently the postulates are constructed, they must often be supplemented by
intuition and classical ideas.

Having discussed the four-step program for extracting statistical information
from the state vector, we continue with our study of what else the postulates of
quantum theory tell us.

Collapse of the State Vector

4

We now examine another aspect of postulate III, namely, that the measurement
of the variable Q changes the state vector, which is in general some superposition
of the form

fy =Y lo){oly)

o

into the eigenstate @) corresponding to the eigenvalue @ obtained in the measure-
ment. This phenomenon is called the collapse or reduction of the state vector.

Let us first note that any definitive statement about the impact of the measure-
ment process presupposes that the measurement process is of a definite kind. For
example, the classical mechanics maxim that any dynamical variable can be measured
without changing the state of the particle, assumes that the measurement is an ideal
measurement (consistent with the classical scheme). But one can think up nonideal
measurements which do change the state; imagine trying to locate a chandelier in a
dark room by waving a broom till one makes contact. What makes Postulate III
profound is that the measurement process referred to there is an ideal quantum
measurement, which in a sense is the best one can do. We now illustrate the notion

of an ideal quantum measurement and the content of this postulate by an example.
1



Consider a particle in a momentum eigenstate | p). The postulate tells us that
if the momentum in this state is measured we are assured a result p, and that the
state will be the same after the measurement (since |y>=|p)is already an eigenstate
of the operator P in question). One way to measure the momentum of the particle
is by Compton scattering, in which a photon of definite momentum bounces off the
particle.

Let us assume the particle is forced to move along the x-axis and that we send
ina right-moving photon of energy %o that bounces off the particle and returns as
a left-moving photon of energy A", (How do we know what the photon energies
are? We assume we have atoms that are known to emit and absorb photons of any
 given energy.) Using momentum and energy conservation:

cp'=cp+h(o+a)

E=E+Hio—ao)

ow possible from this data to reconstruct the initial and final momenta of the

(ho +ho') mc* ho—fo’'
p=——"t, ) 1153 _—
2 oo’ 2
+ ’ 2 4 . '
cp'=(hw ha))+ /1+ i?c ho—fio
2 oo 2

Solving for @' and p’interms of @ and p, one readily sees that for any choice of p,if @ >0,
then so does @’. Thus one can always make the change in momentum p'— p arbi-
trarily small. Hereafter, when we speak of a momentum measurement, this is

itis n
particle:

|
# x with unit probability and leave the state vector unchanged.

|p). Since |p) is a sum of position eigenkets |x),
lp>=J|X> (x| p> dx

-2 .
the measurement wi
position measurement will ch
does a position measurement a

| of infinitesimally low momentum (as we have seen).

ideal measurement of any variable @ in classical mechanics le

what we will mean. We will also assume that to each dynamical variable there exists
a corresponding ideal measurement. We will discuss, for example, the ideal position
measurement, which, when conducted on a particle in state |x), will give the result

Suppose now that we measure the position of a particle in a momentum eigenstate

1l force the system into some state |x). Thus even the ideal
ange the state which is not a position eigenstate. Why
lter the state | p>, while momentum measurement does
* not? The answer is that an ideal position measurement uses photons of infinitely
* high momentum (as we will see) while an ideal momentum measurement uses photons

This then is the big difference between classical and quantum mechanics: an
aves any state invariant,
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whereas the ideal measurement of Q in quantum mechanics leaves only the eigenstates
of Q invariant.
The effect of measurement may be represented schematically as follows:

_ Puly)
€ measured, @ obtained <Pm ['4 [ Pw ‘l/> V2

[v>

where P, is the projection operator associated with { @), and the state after measure-
ment has been normalized. If » is degenerate,

Poly>

Y oy Poyy

where P, is the projection operator for the eigenspace V,,. Special note should be
taken of the following point: if the initial state | > were unknown, and the measur
ment yielded a degenerate eigenvalue @, we could not say what the state was after
the measurement, except that it was some state in the eigenspace with eigenvalue .
On the other hand, if the initial state | ) were known, and the measurement yielded
a degenerate value @, the state after measurement is known to be P,ly) (up to
normalization). Consider our example from V*(R) (Fig. 4.1b). Say we had o=
®,=@. Let us use an orthonormal basis {w, 1>, j@, 2>, |@;), where, as usual, the;
extra labels 1 and 2 are needed to distinguish the basis vectors in the degenerate
eigenspace. If in this basis we know, for example, that

ly>=3lw, 1>+ 3]0, 2) +(z)?| o)

and the measurement gives a value ®, the normalized state after measurement is
known to us to be

vy =2""(lo, 1>+|0,2))

If, on the other hand, the initial state were unknown and a measurement gave a
result @, we could only say

_alo, 1)+ Blw,2)
- (a2+ﬁ2)1/2

lw>

where a and B are arbitrary real numbers.

Note that although we do not know what a and f are from the measurement,
they are not arbitrary. In other words, the system had a well-defined state vector
|y ) before the measurement, though we did not know |y ), and has a well-defined
state vector P, |y > after the measurement, although all we know is that it lies within
a subspace V,,. i



£

‘How to Test Quantum Theory

One of the outstanding features of classical mechanics is that it makes fully
deterministic predictions. It may predict for example that a particle leaving x=x;
with momentum p; in some potential V{(x) will arrive 2 seconds later at x= x, with
momentum p=p,. To test the prediction we release the particle at x=x; with p=p;
at t=0 and wait at x=x, and see if the particle arrives there with p=p, at =2
seconds.

Quantum theory, on the other hand, makes statistical predictions about a
‘particle in a state |y) and claims that this state evolves in time according to
Schrodinger’s equation. To test these predictions we must be able to

(1) Create particles in a well-defined state |y ).
/(2) Check the probabilistic predictions at any time.

The collapse of the state vector provides us with a good way of preparing definite
states: we begin with a particle in an arbitrary state |y ) and meaure a variable Q.
If we get a nondegenerate eigenvalue @, we have in our hands the state |@). (If @
is degenerate, further measurement is needed. We are not ready to discuss this
problem.) Notice how in quantum theory, measurement, instead of telling us what
the system was doing before the measurement, tells us what it is doing just after the
measurement. (Of course it does tell us that the original state had some projection
on the state |@) obtained after measurement. But this information is nothing com-
pared to the complete specifications of the state just after measurement.)

Anyway, assume we have prepared a state |@). If we measure some variable A,
immediately thereafter, so that the state could not have changed from [w), and if
say,

1/2
1 2
Ia))=W Ill>+(§) |A2>+0- (others)

the theory predicts that A; and A, will obtain with probabilities 1/3 and 2/3, respec-
tively. If our measurement gives a A;, i#1, 2 (or worse still a As£any eigenvalue!)
that is the end of the theory. So let us assume we get one of the allowed values, say
A,. This is consistent with the theory but does not fully corroborate it, since the
odds for A, could have been 1/30 instead of 1/3 and we could still get A;. Therefore,
we must repeat the experiment many times. But we cannot repeat the experiment
with zhis particle, since after the measurement the state of the particle is |4,>. We
must start afresh with another particle in [ . For this purpose we require a quantum
ensemble, which consists of a large number N of particles all in the same state |@>.
If a measurement of A is made on every one of these particles, approximately N/3
will yield a value 4, and end up in the state |4, while approximately 2N /3 will yield
a value A, and end up in a state |4,). For sufficiently large ¥, the deviations from
the fractions 1/3 and 2/3 will be negligible. The chief difference between a classical
ensemble, of the type one encounters in, say, classical statistical mechanics, and the
quantum ensemble referred to above, is the following. If in a classical ensemble of
N particles N/3 gave a result 4, and 2N/3 a result A,, one can think of the ensemble
as having contained N/3 particles with A=A, and the others with A= A4, before the
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measurement. In a quantum ensemble, on the other hand, every particle is assum
to be in the same state |w)> prior to measurement (i.e., every particle is potential
capable of yielding either result 4, or 4;). Only after that measurement are a thi
of them forced into the state |4,) and the rest into [A,).

Once we have an ensemble, we can measure any other variable and test tl
expectations of quantum theory. We can also prepare an ensemble, let it evolve |

time, and study it at a future time to see if the final state is what the Schrdding
equation tells us it should be.

Example 4.2.2. An example of an ensemble being used to test quantum theor
was encountered in the double-slit experiment, say with photons. A given photon ¢
momentum p and energy E was expected to hit the detectors with a probabilit
density given by the oscillating function |y (x)|{>. One could repeat the experimen
N times, sending one such photon at a time to see if the final number distributios
indeed was given by |y(x)|>. One could equally well send in a macroscopic, mono
chromatic beam of light of frequency @ =E/#i and wave number k= p/#, whicl
consists of a large number of photons of energy £ and momentum p. If one makes th
assumption (correct to a high degree) that the photons are noninteracting, sending i
the beam is equivalent to experimenting with the ensemble. In this case the intensity

pattern will take the shape of the probability density |y(x)|°, the instant the beam
is turned on. 0

Example 4.2.3. The following example is provided to illustrate the distinction
between the probabilistic descriptions of systems in classical mechanics and in quan-
tum mechanics.

We choose as our classical system a six-faced die for which the probabilities

P(n) of obtaining a number » have been empirically determined. As our quantum
system we take a particle in a state

6
ly>= z Clo:)

i

Suppose we close our eyes, toss the die, and cover it with a mug. Its statisti
description has many analogies with the quantum description of the state |y ):

(1) The state of the die is described by a probability function P(n) before the mug
is lifted.

(2) The only possible values of n are 1, 2, 3, 4, 5, and 6.

(3) If the mug is lifted, and some value—say n=3-—is obtained, the function P(n
collapses to 6,3.

(4) If an ensemble of N such dice are thrown, NP(n) of them will give the result11
(as N— o).

A

The corresponding statements for the particle in the state |y ) are no doubl

known to you. Let us now examine some of the key differences between the statistical
descriptions in the two cases.




(1) Tt is possible, at least in principle, to predict exactly which face of the die
will be on top, given the mass of the die, its position, orientation, velocity, and
angular velocity at the time of release, the viscosity of air, the elasticity of the table
top, and so on. The statistical description is, however, the only possibility in the
quantum case, even in principle.

(2) If the result =3 was obtained upon lifting the mug, it is consistent to
assume that the die was in such a state even prior to measurement. In the quantum
case, however, the state after measurement, say | @3y, is not the state before measure-
ment, namely |y ).

(3) If N such dice are tossed and covered with N mugs, there will be NP(1)
dice with n=1, NP(2) dice with n=2, etc. in the ensemble before and after the
measurement. In contrast, the quantum ensemble corresponding to |y will contain
N particles all of which are in the same state |y ) (that is, each can yield any of the
values @1, . . ., w¢) before the measurement, and NP(w;) particles in |@;)> after the
measurement. Only the ensemble before the measurement represents the state |y).
The ensemble after measurement is a mixture of six ensembles representing the states
@1, ..., w1 O

Having seen the utility of the ensemble concept in quantum theory, we now
define and discuss the two statistical variables that characterize an ensemble.

Expectation Value

Given a large ensemble of N particles in a state | ), quantum theory allows us
to predict what fraction will yield a value o if the variable Q is measured. This
prediction, however, involves solving the eigenvalue problem of the operator Q. If
one is not interested in such detailed information on the state (or the corresponding
ensemble) one can calculate instead an average over the ensemble, called the expecta-
tion value, (). The expectation value is just the mean value defined in statistics:

Q=% P(o)a,=} il ¥H’o;

=L vlwp <oy, (4.2.5)

But for the factors w; multiplying each projection operator |w;> {®;|, we could have
used Y, |@,> {w;| =1. To get around this, note that o]o,)>=Qlow,;>. Feeding this in
and continuing, we get

Q=Y ylQlw) o]y

Now we can use Y |@,) (w{ =1 to get
QO =LylQly) (4.2.6)

I This is an example of a mixed ensemble. These will be discussed in the digression on density matrices,
which follows in a while.
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There are a few points to note in connection with this formula.

(1) To calculate {Q), one need only be given the state vector and the operator
(say as a column vector and a matrix, respectively, in some basis). There is nd
need to find the eigenvectors or eigenvalues of Q.

(2) If the particle is in an eigenstate of Q, that is Q|y> =]y, then (Q)=w.

(3) By the average value of Q we mean the average over the ensemble. A giv
particle will of course yield only one of the eigenvalues upon measurement. Th
mean value will generally be an inaccessible value for a single measurement unle
it accidentally equals an eigenvalue. [A familiar example of this phenomenon i
that of the mean number of children per couple, which may be 2.12, although
the number in a given family is restricted to be an integer.]

The Uncertainty

In any situation described probabilistically, another useful quantity to sp i
besides the mean is the standard deviation, which measures the average fluctuatios
around the mean. It is defined as

AQ={(Q—(Q))D'? (4.27

and often called the root-mean-squared deviation. In quantum mechanics, it i
referred to as the uncertainty in Q. If € has a discrete spectrum

(AQ)* =Y. P(w;) (@~ (Q))’ (428
and if it has a continuous spectrum,
(AQ )= J P(o)(o—{(Q>) do @.2.

Notice that AQ, just like (), is also calculable given just the state and the operato
for Eq. (4.2.7) means just

AQ=[Cy|(Q-<Q>)Hy>]" (4.2.1(1

Usually the expectation value and the uncertainty provide us with a fairly goot
description of the state. For example, if we are given that a particle has (X =g an(
AX =A, we know that the particle is likely to be spotted near x = a, with deviation
of order A.

So far, we have concentrated on the measurement of a single variable at a time
We now turn our attention to the measurement of more than one variable at a time
(Since no two independent measurements can really be performed at the same time
we really mean the measurement of two or more dynamical variables in rapi
succession.)



Exercise 4.2.1 (Very Important). Consider the following operators on a Hilbert space
V(0):

‘ 1 010 1 0 —i 0 1 0 0
Lx:il_/z 1 0 1 N Ly:ﬁ i 0 —i N Lz"—' 0 0 0
01 0 0 i 0 0 0 -1

(1) What are the possible values one can obtain if L, is measured?

(2) Take the state in which L,=1. In this state what are {L,), {Li), and AL,?

(3) Find the normalized eigenstates and the eigenvalues of L, in the L, basis.

(4) If the particle is in the state with L,=—1, and L, is measured, what are the possible
outcomes and their probabilities?

(5) Consider the state

1/2
ly>=| 1/2
1/2'72

in the L, basis. If L2 is measured in this state and a result +1 is obtained, what is the state
after the measurement? How probable was this result? If L, is measured, what are the outcomes
and respective probabilities?

(6) A particle is in a state for which the probabilities are P(L,=1)=1/4, P(L,=0)=
1/2, and P(L,=—1)=1/4. Convince yourself that the most general, normalized state with
this property is

i5, i85, i83

e e e
|W>=7|Lz=1>+F|Lz=0>+7|Lz=_I>

It was stated earlier on that if |y ) is a normalized state then the state ¢? |y is a physically
equivalent normalized state. Does this mean that the factors ¢” multiplying the L, eigenstates
are irrelevant? [Calculate for example P(L,=0).]

Compatible and Incompatible Variables

A striking feature of quantum theory is that given a particle in a state [y ), one
cannot say in general that the particle has a definite value for a given dynamical
variable Q: a measurement can yield any eigenvalue @ for which (@ | ) is not zero.
The exceptions are the states {@). A particle in one of these states can be said, as
in classical mechanics, to have a value @ for €, since a measurement is assured to
give this result. To produce such states we need only take an arbitrary state |y) and
measure Q. The measurement process acts as a filter that lets through just one
component of | >, along some |®). The probability that this will happen in P(w) =
K|yl

We now wish to extend these ideas to more than one variable. We consider
first the question of two operators. The extension to more than two will be
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straightforward. We ask:

Question 1. Is there some multiple filtering process by which we can take
ensemble of particles in some state |y ) and produce a state with well-defined val
o and A for two variables Q and A?

Question 2. What is the probability that the filtering will give such a state if
start with the state |y )?

To answer these questions, let us try to devise a multiple filtering scheme.
us first measure € on the ensemble described by |y ) and take the particles that yiel
a result @. These are in a state that has a well-defined value for Q. We immediatel
measure A and pick those particles that give a result 2. Do we have now an ensemb
that is in a state with Q= and A= A? Not generally. The reason is clear. Aftert
first measurement, we had the system in the state |@ ), which assured a result o f
Q, but nothing definite for A (since |®) need not be an eigenstate of A). Upo
performing the second measurement, the state was converted to

ly'> =14

and we are now assured a result A for A, but nothing definite for Q (since |A) ne
not be an eigenstate of Q).

In other words, the second filtering generally alters the state produced by the
first. This change is just the collapse of the state vector o) =} |A){A| ®) into the
eigenstate |1).

An exception occurs when the state produced after the first measurement i
unaffected by the second. This in turn requires that |®) also be an eigenstate of A‘
The answer to the first question above is then in the affirmative only for the simultas
neous eigenstates |wA). The means for producing them are just as described above,
These kets satisfy the equations

Qor)=ow|lol) (4.2.11)

Aol =Awld) (4,2.12)i

The question that arises naturally is: When will two operators admit simulta-

neous eigenkets? A necessary (but not sufficient) condition is obtained by operating
Eq. (4.2.12) with Q, Eq. (4.2.11) with A, and taking the difference:

(QOA—AQ)| @A) =0 (4.2.1

Thus [Q, A] must have eigenkets with zero eigenvalue if simultaneous eigenkets a
to exist. A pair of operators Q and A will fall into one of the three classes:

A. Compatible: [Q, A]=0
B. Incompatible: [Q, A]=something that obviously has no zero eigenvalue
C. Others



Class A. If two operators commute, we know a complete basis of simultaneous
eigenkets can be found. Each element |wA) of this basis has well-defined values for
Qand A.

Class B. The most famous example of this class is provided by the position and
momentum operators X and P, which obey the canonical commutation rule

(X, P]=i (4.2.14)

Evidently we cannot ever have ifi| y > =0y > for any nontrivial | w ). This means there
doesi't exist even a single ket for which both X and P are well defined. Any attempt
to filter X is ruined by a subsequent filtering for P and vice vesa. This is the origin
of the famous Heisenberg uncertainty principle, which will be developed as we go
along.

Class C. In this case there are some states that are simultaneous eigenkets. There
is nothing very interesting we can say about this case except to emphasize that even
if two operators don’t commute, one can still find a few common eigenkets, though
not a full basis. (Why?)

- Let us now turn to the second question of the probability of obtaining a state

A) upon measurement of  and A in a state ly). We will consider just case A;
question doesn’t arise for case B, and case C is not very interesting. (You should
able to tackle case C yourself after seeing the other two cases.)

Case A. Let us first assume there is no degeneracy. Thus, to a given eigenvalue
there is just one ket and this must be a simultaneous eigenket |@A). Suppose
measured Q first. We get @ with a probability P(w)=|{@w)|*>. After the

urement, the particle is in a state [wA). The measurement of A is certain to
ield the result A. The probability for obtaining @ for Q and A for A is just the
oduct of the two probabilities

P, ) =[<oMy)I* 1= Kol w)I’

23

Notice that if A were measured first and € next, the probability is the same for
getting the results A and . Thus if we expand |y ) in the complete common eigenbasis
as

B’ ly)>=Y oy oAly) (4.2.15a)

P(w, 2)=|{oMy)I*=P(, ) (4.2.15b)

The reason for calling Q and A compatible if [Q, A]=01s that the measurement
' one variable followed by the other doesn’t alter the eigenvalue obtained in the
st measurement and we have in the end a state with a well-defined value for both
bservables. Note the emphasis on the invariance of the eigenvalue under the second
measurement. In the non-degenerate case, this implies the invariance of the state
vector as well. In the degenerate case, the state vector can change due to the second
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measurement, though the eigenvalue will not, as the following example will show.
Consider two operators A and Q on V*(R). Let |w34;) be one common eigenvector,
Let A, =A,=A1. Let ®, # w, be the eigenvalues of Q in this degenerate space. Let w
use as a basis |w1A), |@,4), and |w3A;). Consider a normalized state

() =ajoshd)+ Blo ) + y{wh) (4.2.16

Let us say we measure € first and get w;. The state becomes |w34;) and the subse
quent measurement of A is assured to give a value A; and to leave the state alone,
Thus P(ws, A3) =|{@3ds| w)|*=a?. Evidently P(ws, A3)=P()s, ®3).

Suppose that the measurement of ) gave a value @, . The resulting state is |@4)
and the probability for this outcome is | {@,4| v >|*. The subsequent measurement of
A will leave the state alone and yield the result A with unit probability. Thus P(w,, 4);
is the product of the probabilities: ]

P(o1, A) =Ko A y)I* 1=K A y)|*= (4.2.17)

Let us now imagine the measurements carried out in reverse order. Let the result
of the measurement be A. The state |w’> after measurement is the projection of |y)
in the degenerate A eigenspace: {

ly'>= Pay)  _Bloytylod)
KPPy (B +7DY

(4.2.18)

where, in the expression above, the projected state has been normalized. The prob-
ability for this outcome is P(1)= B>+ ?, the square of the projection of |y in the
eigenspace. If Q) is measured now, both results @, and w, are possible. The probability
for obtaining w, is |{@;A|w'>|*=B%/(B%+ y?). Thus, the probability for the result

A=A, Q=w,, is the product of the probabilities: ‘
A =(B*+7* F =f*= A 2.1

Thus P(w,, A)=P(A, o) independent of the degeneracy. But this time the state
suffered a change due to the second measurement (unless by accident |y’)> has no
component along | w,A>). Thus compatibility generally implies the invariance under
the second measurement of the eigenvalue measured in the first. Therefore, the state
can only be said to remain in the same eigenspace after the second measurement. If
the first eigenvalue is non-degenerate, the eigenspace is one dimensional and the state
vector itself remains invariant.

In our earlier discussion on how to produce well-defined states |y for testing'
quantum theory, it was observed that the measurement process could itself be used
as a preparation mechanism: if the measurement of Q on an arbitrary, unknown,
initial state given a result ®, we are sure we have the state |y)>=|w). But this1
presumes o is not a degenerate eigenvalue. If it is degenerate, we cannot nail down:
the state, except to within an eigenspace. It was therefore suggested that we stick to
variables with a nondegenerate spectrum. We can now lift that restriction. Let us



say a degenerate eigenvalue o for the variable Q was obtained. We have then some
vector in the @ eigenspace. We now measure another compatible variable A. If we
getaresult A, we have a definite state |@A), unless the value (@, 1) itself is degenerate.
We must then measure a third variable I' compatible with © and A and so on.
Ultimately we will get a state that is unique, given all the simultaneous eigenvalues:
|, 4,7, ...>. It is presumed that such a set of compatible observables, called a
complete set of commuting observables, exists. To prepare a state for studying quan-
tum theory then, we take an arbitrary initial state and filter it by a sequence of
compatible measurements till it is down to a unique, known vector. Any nondegener-
ate operator, all by itself, is a “complete set.”

Incidentally, even if the operators Q and A are incompatible, we can specify
the probability P(m, 1) that the measurement of € followed by that of A on a state
|y will give the results @ and A, respectively. However, the following should be
noted:

(1) P(w, 2) #P(1, ) in general.

(2) The probability P(w, A) is not the probability for producing a final state
that has well-defined values ® and A for Q and A. (Such a state doesn’t exist by the
definition of incompatibility.) The state produced by the two measurements is just
the eigenstate of the second operator with the measured eigenvalue.

The Density Matrix—a Digression

So far we have considered ensembles of N systems all in the same state [y ).
They are hard to come by in practice. More common are ensembles of N systems,
n (i=1,2,...,k) of which are in the state |i). (We restrict ourselves to the case
where |} is an element of an orthonormal basis.) Thus the ensemble is described by
kkets |15, 2D, . .., |kD, and k occupancy numbers ny, . .., ne. A convenient way to
assemble all this information is in the form of the density matrix (which is really an
operator that becomes a matrix in some basis):

p=2plD (4.2.20)

where p,;=n;/N is the probability that a system picked randomly out of the ensemble
is in the state |7>. The ensembles we have dealt with so far are said to be pure; they
correspond to all p;=0 except one. A general ensemble is mixed.

Consider now the ensemble average of Q. It is

Q)= piQID) (4.2.21)

The bar on (Q) reminds us that two kinds of averaging have been carried out: a
quantum average {i|Q|i> for each system in [/} and a classical average over the

1 This digression may be omitted or postponed without loss of continuity.
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systems in different states |i>. Observe that
Tr(Qp) =§ J1Qpli>
=L LU Wdp=E T Gl Gl
Jo ;
=; Q| iHp:
= (4.2.22)!
The density matrix contains all the statistical information about the ensemble. Sup-

pose we want, not (Q), but instead P(w), the probability of obtaining a particulari
value w. We first note that, for a pure ensemble,

P(w)=[{o|y)|*=(ylo) (oly) = y|Puly)=(P,)
which combined with Eq. (4.2.22) tells us that
P(0)=Tr(P, p)

The following results may be easily established:

(1) o'=p

2) Trp=1

3) p*=p for a pure ensemble

@) p=(1/k)I for an ensemble uniformly distributed over & states

(5) Trp’<1 (equality holds for a pure ensemble) (4.2.

You are urged to convince yourself of these relations.

Example 4.2.4. To gain more familiarity with quantum theory let us con-
sider an infinite-dimensional ket |y) expanded in the basis {x) of the position
operator X:

x

lw>=J (x> {xly > dx:J x>y (x) dx

e} e o)
i

We call w(x) the wave function (in the X basis). Let us assume y(x) is a Gaussian,
that is, w(x) =4 exp[—(x —a)’/2A’] (Fig. 4.2a). We now try to extract information
about this state by using the postulates. Let us begin by normalizing the state:

1=<wiw>=f ylxy {xly) dx='[ [y (x)I” dx

o 1

= j A% e T gy = 427 AY)'?  (see Appendix A.2)

— 0 '



(a) (b)
[wix)| i)l

a X o D
Figure 4.2. (a) The modulus of the wave function, [{x|w)|=]w(x)[. (b) The modulus of the wave
function, [{piy > =|w(p)i.

So the normalized state is

1 (x—a)2/2A?
V’(x)=(n_A2)1/4e( rra

The probability for finding the particle between x and x + dx is

P(x) dx=|y(x)|* dx= oA g

(”AZ)I/Z

which looks very much like Fig. 4.2a. Thus the particle is most likely to be found
around x=a, and chances of finding it away from this point drop rapidly beyond a
distance A. We can quantify these statements by calculating the expectation value
and uncertainty for X. Let us do so.

Now, the operator X defined in postulate II is the same one we discussed at
length in Section 1.10. Its action in the X basis is simply to multiply by x, i.e., if

xlyy=y(x)

then,

<XIX|W>:J <XIX|x’><X’|W>dX’=J x6(x=x)y(x) dx’

-

=xy(x)

Using this result, the mean or expectation value of X is

<X>=<V/|X|V/>=f Kyl x> x| Xy dx

o0

=J yr()xy (x) dx

s a]

1 « —(x—a)?/A?
=(7[T2)V_Zj e( )/Axdx

o0
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If we define y=x—a,

1 * .
<X>=Wf (ytaye” ™ dy
=a

We should have anticipated this result of course, since the propability density i
symmetrically distributed around x=a.
Next, we calculate the fluctuations around (X} =aq, i.e., the uncertainty

AX =Wl (X =0 Vlyy ]
=YX =2X X0 + O )]
=Kyl = O] (since CylXIyy= (X))
= (X~ X
=[x ="

Now
<X2>=(7MA12TJ.m e‘(x—a)z/ZAz.lee—(x*a)2/2A2 dx
-1 PR 2 o A >
~(75A2)'/2f_ooe (y +2ya+a)dy—7+0+a
So

So much for the information on the variable X. Suppose we next want to kno
the probability distribution for different values of another dynamical variable, sa
the momentum P.

(1) First we must construct the operator P in this basis.

(2) Then we must find its eigenvalues p, and eigenvectors |p).

(3) Finally, we must take the inner product {p|w>.

(4) If p is discrete, |{pdw)|*=P(p:), and if p is continuous, |{p|w)|*>=P(p), th
probability density.

Now, the P operator is just the K operator discussed in Section 1.10 multiplied by
7i and has the action of —i# d/dx in the X basis, for if

xlyd=w(x)
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= J. [—ifid (x—x)]y(x") dx' (Postulate IT)

I
dx

Thus, if we project the eigenvalue equation

Plp>=plp>
onto the X basis, we get
(x| Pl py=p<x|p>
or

—i )y ()
X

where ,(x) = (x| p). The solutions, normalized to the Dirac delta functionf are
(from Section 1.10)

ipx/h

yp(x)= k) €

Now we can compute
{plyy= J (plx) x|y dx= J yx(x)w(x) dx

o —ipx/h _—(x—a)?/24? 2 \1/4

_ € € dx= A o ipal/* o P2
Qrr)'? (zaH'* T

— o0

The modulus of w(p) is a Gaussian (Fig. 4.2b) of width #/2'7A. Tt follows that
(P>=0, and AP=17/2'/*A. Since AX=A/2"; we get the relation

1 Here we want {p| p'> = 8(p—p')=8(k—K)/#, where p= #ik. This explains the (27%)”
factor.

AX-AP=H/2

/2 hormalization
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The Gaussian happens to saturate the lower bound of the uncertainty relation (t
be formally derived in chapter 9):

AX-AP>1/2

The uncertainty relation is a consequence of the general fact that anythi
narrow in one space is wide in the transform space and vice versa. So if you a
110-1b weakling and are taunted by a 600-1b bully, just ask him to step into momel
tum space!

This is a good place to point out that the plane waves ¢?*/* (and all improper
vectors, i.e., vectors that can’t be normalized to unity but only to the Dirac delt
function) are introduced into the formalism as purely mathematical entities. Our
inability to normalize them to unity translates into our inability to associate with
them a sensible absolute probability distribution, so essential to the physical interpre-
tation of the wave function. In the present case we have a particle whose relative
probability density is uniform in all of space. Thus the absolute probability of finding
it in any finite volume, even as big as our solar system, is zero. Since any partick
that we are likely to be interested in will definitely be known to exist in some finit
volume of such large dimensions, it is clear that no physically interesting state wil
be given by a plane wave. But, since the plane waves are eigenfunctions of P, doc
it mean that states of well-defined momentum do not exist? Yes, in the strict sensc.
However, there do exist states that are both normalizable to unity (i.e., correspond
to proper vectors) and come arbitrarily close to having a precise momentum. For
example, a wave function that behaves as e”**/” over a large region of space and
tapers off to zero beyond, will be normalizable to unity and will have a Fourier
transform so sharply peaked at p=p, that momentum measurements will only give
results practically indistinguishable from p,. Thus there is no conflict between the
fact that plane waves are unphysical, while states of well-defined momentum exist,
for “well defined” never means “mathematically exact,” but only “exact to any
measurable accuracy.” Thus a particle coming out of some accelerator with some
advertised momentum, say 500 GeV/c, is in a proper normalizable state (since it is
known to be located in our laboratory) and not in a plane wave state corresponding
to {p=500 GeV/c>.

But despite all this, we will continue to use the eigenkets |[p) as basis vectors
and to speak of a particle being in the state | p), because these vectors are so much
more convenient to handle mathematically than the proper vectors. It should, how-
ever, be borne in mind that when we say a particle is (coming out of the accelerator)
in a state | po), it is really in a proper state with a momentum space wave function
so sharply peaked at p=p, that it may be replaced by a delta function 5(p — po).

The other set of improper kets we will use in the same spirit are the position
eigenkets | x>, which also form a convenient basis. Again, when we speak of a particle
being in a state |x,) we shall mean that its wave function is so sharply peaked
X=X, that it may be treated as a delta function to a good accuracy.{

1 Thus, by the physical Hilbert space, we mean the space of interest to physicists, not one whose elemen
all correspond to physically realizable states.



Occasionally, the replacement of a proper wave function by its improper coun-
terpart turns out to be a poor approximation. Here is an example from Chapter 19:
Consider the probability that a particle coming out of an accelerator with a nearly
exact momentum scatters off a target and enters a detector placed far away, and not
in the initial direction. Intuition says that the answer must be zero if the target is
absent. This reasonable condition is violated if we approximate the initial state of
the particle by a plane wave (which is nonzero everywhere). So we proceed as follows.
In the vicinity of the target, we use the plane wave to approximate the initial wave
function, for the two are indistinguishable over the (finite and small) range of influ-
ence of the target. At the detector, however, we go back to the proper wave (which
has tapered off ) to represent the initial state.

Exercise 4.2.2.* Show that for a real wave function w(x), the expectation value of
momentum ¢P>=0. (Hint: Show that the probabilities for the momenta +p are equal.)
Generalize this result to the case w =cy,, where y, is real and ¢ an arbitrary (real or complex)
constant. (Recall that |y) and a|y) are physically equivalent.)

Exercise 4.2.3.* Show that if w(x) has mean momentum (P, e7*/" y(x) has mean
momentum (P +po.

Example 4.2.5. The collapse of the state vector and the uncertainty principle
play a vital role in explaining the following extension of the double slit experiment.
Suppose I say, “‘I don’t believe that a given particle (let us say an electron) doesn’t
really go through one slit or the other. So I will set up a light source in between the
dits to the right of the screen. Each passing electron will be exposed by the beam
and I note which slit it comes out of. Then I note where it arrives on the screen. I
make a table of how many electrons arrive at each x and which slit they came from.
Now there is no escape from the conclusion that the number arriving at a given x
is the sum of the numbers arriving via S; and S>. So much for quantum theory and
its interference pattern!”

But the point of course is that quantum theory no longer predicts an interference
pattern! The theory says that if an electron of definite momentum p is involved, the
corresponding wave function is a wave with a well-defined wave number k=p/#,
which interferes with itself and produces a nice interference pattern. This prediction
is valid only as long as the state of the electron is what we say it is. But this state is
necessarily altered by the light source, which upon measuring the position of the
electron (as being next to Sy, say) changes its wave function from something that
was extended in space to something localized near ;. Once the state is changed, the
old prediction of interference is no longer valid.

Now, once in a while some electrons will get to the detectors without being
detected by the light source. We note where these arrive, but cannot classify them
as coming via S, or S,. When the distribution of just these electrons is plotted; sure
enough we get the interference pattern. We had better, for quantum theory predicts
it, the state not having been tampered with in these cases.

The above experiment can also be used to demystify to some extent the collapse

f the wave function under measurement. Why is it that even the ideal measurement
oduces unavoidable changes in the state? The answer, as we shall see, has to do
ith the fact that 7 is not zero.
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M
0 bt— ?
861/ |
o2 —*% | Figore 4.3. Light of frequency A bounces off the electron, enters
f 1 f the objective O of the microscope, and enters the eye E of the
2 observer.

Consider the schematic set up in Fig. 4.3. Light of wavelength A illuminates an
electron (e7), enters the objective (O) of a microscope (M) and reaches our eye (E).
If 56 is the opening angle of the cone of light entering the objective after interacting
with the electron, classical optics limits the accuracy of the position measurement
by an uncertainty

AX=A/sin 66 }

Both classically and quantum mechanically, we can reduce AX to 0 by reducing i
to zero.] In the latter description however, the improved accuracy in the position
measurement is at the expense of producing an increased uncertainty in the x compo-
nent (p,) of the electron momentum. The reason is that light of wavelength A is not
a continuous wave whose impact on the electron momentum may be arbitrarily
reduced by a reduction of its amplitude, but rather a flux of photons of momentum
p=2rt/A. As A decreases, the collisions between the electron and the photons
become increasingly violent. This in itself would not lead to an uncertainty in the
electron momentum, were it not for the fact that the x component of the photons
entering the objective can range from 0 to p sin §6=2x7% sin §6/A. Since at least
one photon must reach our eyes after bouncing off the electron for us to see it, there
is a minimum uncertainty in the recoil momentum of the electron given by

AP,C:Q%;2 sin 660

Consequently, we have at the end of our measurement an electron whose positiof
and momenta are uncertain by AX and AP, such that

AX AP, ~2nhi~h
[The symbols AX and AP, are not precisely the quantities defined in Eq. (4.2.7) but,
are of the same order of magnitude.] This is the famous uncertainty principle. There is.

no way around it. If we soften the blow of each photon by increasing A or narrowing
the objective to better constrain the final photon momentum, we lose in resolutiony

1 This would be the ideal position measurement.



More elaborate schemes, which determine the recoil of the microscope, are equally
futile. Note that if 7 were 0, we could have AX and AP, simultaneously 0. Physically,
it means that we can increase our position resolution without increasing the punch
carried by the photons. Of course 7 is not zero and we can’t make it zero in any
experiment. But what we can do is to use bigger and bigger objects for our experiment
so that in the scale of these objects # appears to be negligible. We then regain
classical mechanics. The position of a billiard ball can be determined very well
by shining light on it, but this light hardly affects its momentum. This is why one
imagines in classical mechanics that momentum and position can be well defined
simultaneously. O

Generalization to More Degrees of Freedom

Our discussion so far has been restricted to a system with one degree of free-
dom-—namely, a single particle in one dimension. We now extend our domain to a
system with N degrees of freedom. The only modification is in postulate II, which
now reads as follows.

Postulate 1. Corresponding to the N Cartesian coordinates x;, . . ., xy describ-
ing the classical system, there exist in quantum theory N mutually commuting
operators X1, ..., Xn. In the simultaneous eigenbasis |xy, x», . . ., x») of these

operators, called the coordinate basis and normalized as
Xy X, vy XNIXT, X2, 00, XD =801 —x1) . B(xn—XN)

(the product of delta functions vanishes unless all the arguments vanish) we
have the following correspondence:

lw>—=Lxy, o xn|W>=w(x, ..., xy)

Xlyo>-olxp, .. xnl|Xilwd=xw(x, ..., xXn)

. 0
Pi|‘/’>_’<x1,~'-,XN|Pi|W>=—1h$W(XI,--->XN)

>P,' being the momentum operator corresponding to the classical momentum
pi. Dependent dynamical variables @(x;, p;) are represented by operators Q=
o(x—~X;, p—FP)).

The other postulates remain the same. For example
lw(xi,...,xn)|>Xdx...dxy is the probability that the particle coordinates lie
between xy, X2, ..., xy and x; +dxi, Xa+dx,, ..., xy+dxy.

This postulate is stated in terms of Cartesian coordinates since only in terms
of these can one express the operator assignments in the simple form X,—-x;,
P,——if 0/dx;. Once the substitutions have been made and the desired equations
obtained in the coordinate basis, one can perform any desired change of variable
before solving them. Suppose, for example, that we want to find the eigenvalues and
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eigenvectors of the operator Q, corresponding to the classical variable

2 2 2
+p5+
HTPTh Xt+x3+x3 (4.2
2m
where x1, x,, and x; are the three Cartesian coordinates and p; the correspondi
momenta of a particle of mass m in three dimensions. Since the coordinates
usually called x, y, and z, let us follow this popular notation and rewrite Eq. (4.2.%

) 1

vyt
R i T4 (422
m
To solve the equation
Qo)=ovlo)
with
Pi+ P2+ P
Q=""—"2 4+ x*17*+7?
2m

we make the substitution

]w>_’!//w(x’ J’> Z)

X-x, P.—»—ih —5~
ox

etc. and get

-w(o *F &
[5’; (5;—2+5y +5—~>+x +y +z }y/m(x,y, =oy.(x,,z) (422

Once we have obtained this differential equation, we can switch to any other set
coordinates. In the present case the spherical coordinates 7, , and ¢ recommy
themselves. Since

. 1 5
rlLor\ or no 00 00/ sin” 0 0¢
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+r Y=oV, (4.2.27)

What if we wanted to go directly from @ in spherical coordinates

1 2 2
ws~—(p%+@+ L >+r2

2m ' rsin? @

Eq. (4.2.27)? 1t is clear upon inspection that there exists no simple rule [such as
- (—ifi 0/0r)] for replacing the classical momenta by differential operators in r, 6,
pnd ¢ which generates Eq. (4.2.27) starting from the @ above. There does exist a
bomplicated procedure for quantizing in non-Cartesian coordinates, but we will not
iscuss it, since the recipe eventually reproduces what the Cartesian recipe (which
scems to work{) yields so readily.

There are further generalizations, namely, to relativistic quantum mechanics
and to quantum mechanics of systems in which particles are created and destroyed
(so that the number of degrees of freedom changes!). Except for a brief discussion
bof these toward the end of the program, we will not address these matters.

14.3. The Schrodinger Equation (Dotting Your i’s and Crossing Your #’s)

Having discussed in some detail the state at a given time, we now turn our
.attention to postulate IV, which specifies the change of this state with time. According

fto this postulate, the state obeys the Schrédinger equation
4

d
iﬁ;(w(t)>=fﬂv/(t)> (43.1)

Qur discussion of this equation is divided into three sections:

(1) Setting up the equation
(2) General approach to its solution
(3) Choosing a basis for solving the equation

Setting Up the Schrodinger Equation
To set up the Schrédinger equation one must simply make the substitution
H(x—X, p—P), where # is the classical Hamiltonian for the same problem. Thus,

{ In the sense that in cases where comparison with experiment is pOssible, as in say the hydrogen spectrum,
there is agreement.
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if we are describing a harmonic oscillator, which is classically described by
Hamiltonian

2

=P e (.
2m 2

the Hamiltonian operator in quantum mechanics is

H= E+ % ma’X* (4.3
m

In three dimensions, the Hamiltonian operator for the quantum oscillator is like

P2+ P>+ P 1
H=—"—2""24 -—mo* (X’ +Y’+2Z% (43
2m 2

assuming the force constant is the same in all directions.
If the particle in one dimension is subject to a constant force f, then

H =——
2m fx
and
P2
H=——fX 4.3.
2m

For a particle of charge g in an electromagnetic field in three dimensions,

_Ip—(g/)AG, 1)
2m

H

+qo(r, 1) (43.

In constructing the corresponding quantum Hamiltonian operator, we must use th
symmetrized form

1 2
H=_(P-P—QP-A—QA-P+%A-A>+q¢ (43,
2m c c ¢

since P does not commute with A, which is a function of X, Y, and Z.

In this manner one can construct the Hamiltonian H for any problem with
classical counterpart. Problems involving spin have no classical counterparts a
some improvisation is called for. We will discuss this question when we study spi
in some detail in Chapter 14.



General Approach to the Solution

Let us first assume that A has no explicit ¢ dependence. In this case the equation
ihly)=Hyy)

is analogous to equations discussed in Chapter 1

i" [X>=0Q|x>

S

and

,” Vy=—Kly)

describing the coupled masses and the vibrating string, respectively. Our approach
will once again be to find the eigenvectors and eigenvalues of H and to construct
the propagator U(z) in terms of these. Once we have U(r), we can write

lw(0))=U@)|y(0))

There is no need to make assumptions about |y(0)) here, since it is determined by
Eq. (43.1):

¥ 1W(O)>=— ()

i
In other words, Schrédinger’s equation is first order in time, and the specification
of |y at =0 is a sufficient initial-value datum.

Let us now construct an explicit expression for U(¢) in terms of | E), the normal-
ized eigenkets of H with eigenvalues E which obey

HE>=EE) (4.3.8)

This is called the time-independent Schridinger equation. Assume that we have solved
it and found the kets |ED>. If we expand |y ) as

tw(O>=YIEXElW(t)) =} ax(1) E) (4.3.9)
the equation for az(¢) follows if we act on both sides with (i% 6/0t— H):
0=(if 0/0t— H)|y(t))> =Y, (ihidg— Eag)\E ) = itidg=Eag (4.3.10)

where we have used the linear independence of the kets {E). The solution to Eq.
(4.3.10) is

~ ag(t)=ag(0) e */* (4.3.11a)
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or
CEly(0)y = (Ely(0)) e ™" (4.3.1
so that
Iw(t)>=§ |EY (Ely(0)) e/ (431
We can now extract U(s):
U(s) =§ |E) CE] " (43,

We have been assuming that the energy spectrum is discrete and nondegenerate.
E is degenerate, one must first introduce an extra label a (usually the eigenvalue
a compatible observable) to specify the states. In this case

U)=Y Y |E, a){E, a] e /"

a E
If E is continuous, the sum must be replaced by an integral. The normal modes
|E()y=|E) e

are also called stationary states for the following reason: the probability distribution
P(w) for any variable Q is time-independent in such a state:

P(w, )= |[{oly())H
=< E(t)))?
=[(o|E)y e/
=|<w|E)’
= P(w, 0)

There exists another expression for U(r) besides the sum, Eq. (4.3.13), a
that is

U(ty=e " (4.3.14)

If this exponential series converges (and it sometimes does not), this form of
U(t) can be very useful. (Convince yourself that |y (£))>=e#"/%|y(0)) satisfies
Schrodinger’s equation.)

Since H (the energy operator) is Hermitian, it follows that U(¢) is unitary. We
may therefore think of the time evolution of a ket |y(¢))> as a “rotation” in Hilbert



space. One immediate consequence is that the norm {y ()] w(#)) is invariant:

YOIy =y O U@ U@y (0)) =y (0) y(0)) (4.3.15)

so that a state, once normalized, stays normalized. There are other consequences of
the fact that the time evolution may be viewed as a rotation. For example, one can
abandon the fixed basis we have been using, and adopt one that also rotates at the
same rate as the state vectors. In such a basis the vectors would appear frozen, but
the operators, which were constant matrices in the fixed basis, would now appear to
be time dependent. Any physical entity, such as a matrix element, would, however,
come out the same as before since {¢p|Q|y >, which is the dot product of {(¢| and
|Qy>, is invariant under rotations. This view of quantum mechanics is called the
Heisenberg picture, while the one we have been using is called the Schrddinger picture.
Infinitely many pictures are possible, each labeled by how the basis is rotating. So
if you think you were born too late to make a contribution to quantum theory fear
not, for you can invent your own picture. We will take up the study of various
pictures in Chapter 18.

Let us now consider the case H= H(¢). We no longer look for normal modes,
since the operator in question is changing with time. There exists no fixed strategy
for solving such problems. In the course of our study we will encounter a time-
dependent problem involving spin which can be solved exactly. We will also study
a systematic approximation scheme for solving problems with

5

L H()=H'+H'(1)

where H° is a large time-independent piece and H'(z) is a small time-dependent
piece.

What is the propagator U(?) in the time-dependent case? In other words, how
is UH) in |y(6)>=U()|yw(0)) related to H(¢)? To find out, we divide the interval
(0—1¢) into N pieces of width A=¢/N, where N is very large and A is very small. By
integrating the Schrodinger equation over the first interval, we can write fo first order
inA

|w(A)>=1w(0)>+A%"t’—>

0

iA
=|w(0)) —fh— HO)|y(0))
A
={1 —5,; H(O)}i v (0)>
which, to this order

=exp[1hié H(O)}IW(OD
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[One may wonder whether in the interval 0 —A, one must use H(0) or H(A) or
H(A/2) and so on. The difference between these possibilities is of order A and henct
irrelevant, since there is already one power of A in front of H.] Inching forth in steps
of A, we get

()= T1 e |y (0))

We cannot simply add the exponents to get, in the N> oo limit,
t
U(f)=exp [—(i/h) f H(t) dt’:’
0

since
[H(t1), H(22)] #0
in general. For example, if

H(t)=X"?cos’ wt+ P? sin’ ot

then
HO0)=X"
and
H(r/20)=P*
and
[H(0), H(% /20)] #0

It is common to use the symbol, called the time-ordered integral

T{exp [—(i/h) J H(t) dt’:l}= im ] exp[—(i/A) H(nA)A]

N-ow np=0

being a product of unitary operators, U(?) is unitary, and time evolution contin

in such problems. We will not make much use of this form of U(¢). But notice t&j
to be a “rotation” whether or not H is time independent. |
|



Whether or not H depends on time, the propagator satisfies the following
conditions:

U(t3, t2) U(tz’ tl) = U(t3a tl)

. . (4.3.16)

U, 1)) =U"(t2, )= U(t1, 1)
It is intuitively clear that these equations are correct. You can easily prove them by
applying the U’s to some arbitrary state and using the fact that U is unitary and
uie, =1

Choosing a Basis for Solving Schrodinger’s Equation

Barring a few exceptions, the Schrodinger equation is always solved in a particu-
lar basis. Although all bases are equal mathematically, some are more equal than
others. First of all, since = H(X, P) the X and P bases recommend themselves, for
in going to one of them the corresponding operator is rendered diagonal. Thus one
can go to the X basis in which X—x and P——i#i d/dx or to the P basis in which
P-p and X—ifi d/dp. The choice between the two depends on the Hamiltonian.
Assuming it is of the form (in one dimension)

2

P
H=T+V=—+V(X) (4.3.17)
2m

the choice is dictated by V(X ). Since F(X) is usually a more complicated function
of X than T is of P, one prefers the X basis. Thus if

5 P? 1
“ =—+ 4.3.18
2m cosh® X ( )
the equation
H\E)=E|E)
becomes in the X basis the second-order equation
W d 1 )
-—— =t x)=Eygx 4.3.19
( 2m dx* cosh’ x ve(x) = Evx) ( )

which can be solved. Had one gone to the P basis, one would have ended up with
the equation

2

p— - a5 . - . . _ =
[Zm N cosh’ (i d/dp) }‘VE(P) Ey(p) (4.3.20)

which is quite frightening.
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A problem where the P basis is preferred is that of a particle in a constant fo
field f, for which

PZ
zz_m__fX 4.3.

In the P basis one gets a first-order differential equation

2 d
( z’i— 'hf~)w5(p) =Eyx(p) 3.
m dp

whereas in the X basis one gets the second-order equation

W d?
(——— ——fx)l//E(x) = Eyg(x) 4.3.

2m dx*

The harmonic oscillator can be solved with equal ease in either basis since H
quadratic in X and P. It turns out to be preferable to solve it in a third basis i
which neither X nor P is diagonal! You must wait till Chapter 7 before you see ho
this happens.

There exists a built-in bias in favor of the X basis. This has to do with the f:
that the x space is the space we live in. In other words, when we speak of
probability of obtaining a value between x and x + dx if the variable X is measur
we mean simply the probability of finding the particle between x and x+dx in o
space. One may thus visualize y(x) as a function in our space, whose modul
squared gives the probability density for finding a particle near x. Such a picture i
useful in thinking about the double-slit experiment or the electronic states in
hydrogen atom.

But like all pictures, it has its limits. First of all it must be borne in mind th
even though y(x) can be visualized as a wave in our space, it is not a real wa
like the electromagnetic wave, which carries energy, momentum, etc. To understaj
this point, consider a particle in three dimensions. The function y(x, y, z) can
visualized as a wave in our space. But, if we consider next a two-particle syst
v(x1, y1, 21, X2, V2, Z2) is a function in a six-dimensional configuration space an
cannot be visualized in our space.

Thus the case of the single particle is really an exception: there is only o
position operator and the space of its eigenvalues happens to coincide with the sp.
in which we live and in which the drama of physics takes place.

This brings us to the end of our general discussion of the postulates. We now turn
to the application of quantum theory to various physical problems. For pedagogical
reasons, we will restrict ourselves to problems of a single particle in one dimension
in the next few chapters.



Simple Problems in
One Dimension

[Now that the postulates have been stated and explained, it is all over but for the
‘applications. We begin with the simplest class of problems—concerning a single
particle in one dimension. Although these one-dimensional problems are somewhat
artificial, they contain most of the features of three-dimensional quantum mechanics
but little of its complexity. One problem we will not discuss in this chapter is that
of the harmonic oscillator. This problem is so important that a separate chapter has

' been devoted to its study.

'5,1. The Free Particle

f
E The simplest problem in this family is of course that of the free particle. The
Schrodinger equation is

e p?
i iflyy=Hly>=_—|v) (5.1.1)
! 2m
The normal modes or stationary states are solutions of the form
ly>=|Ey e =" (5.1.2)

‘Feeding this into Eq. (5.1.1), we get the time-independent Schrodinger equation
for |E:

2

P
H|E>=%|E>=E|E> (5.1.3)

. This problem can be solved without going to any basis. First note that any cigenstate
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of P is also an eigenstate of P> So we feed the trial solution [p) into Eq. (5.1.
and find

P2
o 1P =EIP)
or
2
(E_—E) Ip>=0 (514
2m

Since |p) is not a null vector, we find that the allowed values of p are

p=+(2mE)'”? (5.1.5‘
In other words, there are two orthogonal eigenstates for each eigenvalue E:

|E, +>=|p=012mE)""*> (5.14)

|E, —>=|p=—2mE)"* (5.1.7i

Thus, we find that to the cigenvalue E there corresponds a degenerate two-dimen-
sional eigenspace, spanned by the above vectors. Physically this means that a particle
of energy E can be moving to the right or to the left with momentum |p| = (2mE)">.
Now, you might say, “This is exactly what happens in classical mechanics. So what’s
new?” What is new is the fact that the state

|E>=plp=(2mE)"*) +ylp=—(2mE)"*) .1y

is also an eigenstate of energy E and represents a single particle of energy E that ca*
be caught moving either to the right or to the left with momentum (2mE)'"*!
To construct the complete orthonormal eigenbasis of H, we must pick fro
each degenerate eigenspace any two orthonormal vectors. The obvious choice i
given by the kets |E, + ) and |E, — ) themselves. In terms of the ideas discussed i
the past, we are using the eigenvalue of a compatible variable P as an extra la
within the space degenerate with respect to energy. Since P is a nondegeneral
operator, the label p by itself is adequate. In other words, there is no need to
the state |p, E=P*/2m), since the value of E=E(p) follows, given p. We sh
therefore drop this redundant label.
The propagator is then

v = j IP><pl e =" dp

= f \p>{p| e """ dp (5.1

[e'e}



Exercise 5.1.1. Show that Eq. (5.1.9) may be rewritten as an integral over E and a sum
over the + index as

m

U= % J [W]w,axam e /P dE

Exercise 5.1.2.* By solving the eigenvalue equation (5.1.3) in the X basis, regain Eq.
(5.1.8), i.e., show that the general solution of energy Eis

§

i 12 . 12
' wE(x)=pMM expl —i(2mE) "x/h]

Qnh)'”? Qrh)'”?

[The factor (2n#h)~'7* is arbitrary and may be absorbed into B and y.] Though vz (x)
will satisfy the equation even if E<0, are these functions in the Hilbert space?

The propagator U(¢) can be evaluated explicitly in the X basis. We start with
the matrix element

Ux, t; X)) = U)X )= J Clp><pla’y €7 dp

2 L [T g
2rhJ_,
m 172
- :<2ﬂhit> G X2he (5.1.10)

using the result from Appendix A.2 on Gaussian integrals. In terms of this propa-
gator, any initial-value problem can be solved, since

vix, H= J U(x, t; X)w(x', 0) dx' (5.1.11)
Had we chosen the initial time to be ' rather than zero, we would have gotten
vix, = J U'(x, t;x, O)p(xX, t) dx’ (5.1.12)

where U(x, t; x', ) =<x|U(t— 1')|x'>, since U depends only on the time interval ¢ — t
and not the absolute values of ¢ and 7. [Had there been a time-dependent potential
such as V(8)="Vo ¢ ““ in H, we could have told what absolute time it was by looking
at ¥(1). In the absence of anything defining an absolute time in the problem, only
time differences have physical significance.] Whenever we set ¢ =0, we will resort to
our old convention and write U(x, 13 x', 0) as simply U(x, ; x).

A nice physical interpretation may be given to U(x, t;x', ') by considering a
special case of Eq. (5.1.12). Suppose we started off with a particle localized at
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x'=xg, that is, with w(x', £')=8(x"— x5). Then ‘
v(x, )=U(x, t; x5, t') (5.1.13)

In other words, the propagator (in the X basis) is the amplitude that a partick
starting out at the space-time point (x5, t) ends with at the space-time point (x, t).
[It can obviously be given such an interpretation in any basis: (@] U(, t')|@"> is th
amplitude that a particle in the state (@') at ¢ ends up with in the state (@) at ¢]
Equation (5.1.12) then tells us that the total amplitude for the particle’s arrival ai
(x, 1) is the sum of the contributions from all points x’ with a weight proportional
to the initial amplitude y(x', #') that the particle was at x’ at time #'. One also refers
to Ulx, t; xp, t') as the “fate” of the delta function y(x', t') = 6(x'— xp).

Time Evolution of the Gaussian Packet

There is an unwritten law which says that the derivation of the free-particl{
propagator be followed by its application to the Gaussian packet. Let us follow thif
tradition. :

Consider as the initial wave function the wave packet

i

_X'Z/ZAZ
’ ipox’ /B
w(x, 0) ="/ Yo (5.11
{
This packet has mean position (X»=0, with an uncertainty AX =A/2'”, and mear

momentum p, with uncertainty %/2"/?A. By combining Egs. (5.1.10) and (5.1.12) w

get
i ~1/2 e 2 l
w(x, t)=|:”1/2(A+l_h£)] -explr Z(X Pot/"")7 ]
mA 2A°(1 + ikt /mA”)
ipo pot
x g 5.1.19
CXP[ A (x 2m>] (

The corresponding probability density is f
- 1 ~[x = (po/m)1}’ :
P 0= @A) p{ N+ 70 /M A (5116

The main features of this result are as follows:

(1) The mean position of the particles is

(ry=Pe P!




In other words, the classical relation x=(p/m)t now holds between average quanti-
ties. This is just one of the consequences of the Ehrenfest theorem which states
that the classical equations obeyed by dynamical variables will have counterparts in
quantum mechanics as relations among expectation values. The theorem will be
proved in the next chapter.

(2) The width of the packet grows as follows:

2.2\1/2
Al _ A ( it ) (5.1.17)

AX([)=?E—E]7 1+m2A4

The increasing uncertainty in position is a reflection of the fact that any uncertainty
in the initial velocity (that is to say, the momentum) will be reflected with passing
time as a growing uncertainty in position. In the present case, since AV(0) =AP(0)/
m="1/2"’mA, the uncertainty in X grows approximately as AX ~%t/2'>mA which
agrees with Eq. (5.1.17) for large times. Although we are able to understand the
spreading of the wave packet in classical terms, the fact that the initial spread AV(0)
is unavoidable (given that we wish to specify the position to an accuracy A) is a
purely quantum mechanical feature.

If the particle in question were macroscopic, say of mass 1 g, and we wished to
fix its initial position to within a proton width, which is approximately 10" cm, the
uncertainty in velocity would be

z

7 -
l; AV(O):szO l4CII]/S(30

It would be over 300,000 years before the uncertainty A(z) grew to 1 millimeter! We

may therefore treat a macroscopic particle classically for any reasonable length of
time. This and similar questions will be taken up in greater detail in the next chapter.

Exercise 5.1.3 (Another Way to Do the Gaussian Problem). We have seen that there exists
another formula for U(7), namely, U(¢) = **/*, For a free particle this becomes

U(t)=exp[i(h’ dz)]= 5 l('i’) d” (5.1.18)

\2m dx’ Soont\2m) dx™

Consider the initial state in Eq. (5.1.14) with p,=0, and set A=1, t'=0:

_xl/z

v(x, 0)2(—75,74

Find y(x, t) using Eq. (5.1.18) above and compare with Eq. (5.1.15).
Hints: (1) Write y(x, 0) as a power series:

; _ s o (_l)nXZn
g Ve 0= ¥ S
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CHAPTER §
N d_Z)Z
’ 2m) dx*’ 21\2m dx?
etc., on this power series.

(3) Collect terms with the same power of x.
(4) Look for the following series expansion in the coefficient of x™":

g\ TR T1/2 . e\ 2
(H@) :l_(n+1/2)(mz>+(n+1/2)(n+3/2)(@) .
m

m 2! m
(5) Juggle around till you get the answer.

Exercise 5.1.4: A Famous Counterexample. Consider the wave function

v(x, 0)=sin<%), x| <L/2
=0, jx|>L/2

It is clear that when this function is differentiated any number of times we get another functi
confined to the interval |x| < L/2. Consequently the action of

. h,’! d2
co=canl 3 ()]

on this function is to give a function confined to |x| < L/2. What about the spreading of tht
wave packet?

[Answer: Consider the derivatives at the boundary. We have here an example where thy
(exponential) operator power series doesn’t converge. Notice that the convergence of at
operator power series depends not just on the operator but also on the operand. So there it
no paradox: if the function dies abruptly as above, so that there seems to be a paradox, the
derivatives are singular at the boundary, while if it falls off continuously, the function wi
definitely leak out given enough time, no matter how rapid the falloff.]

Some General Features of Energy Eigenfunctions
Consider now the energy eigenfunctions in some potential ¥(x). These obey

2m(E-V)
e

" —

[4

where each prime denotes a spatial derivative. Let us ask what the continuity
V(x) implies. Let us start at some point x, where y and w' have the values y(
and y'(x,). If we pretend that x is a time variable and that y is a particle coordina
the problem of finding y everywhere else is like finding the trajectory of a partic
(for all times past and future) given its position and velocity at some time and if
acceleration as a function of its position and time. It is clear that if we integra‘
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Figure 5.1. (a) The box potential. (b) The first two levels and wave functions in the box.

these equations we will get continuous w'(x) and y(x). This is the typical situation.
There are, however, some problems where, for mathematical simplicity, we consider
potentials that change abruptly at some point. This means that y” jumps abruptly
there. However, v’ will still be continuous, for the area under a function is continuous
even if the function jumps a bit. What if the change in V is infinitely large? It means
that y" is also infinitely large. This in turn means that v’ can change abruptly as
we cross this point, for the area under y” can be finite over an infinitesimal region
that surrounds this point. But whether or not v’ is continuous, y, which is the area
Inder it, will be continuous.}
Let us turn our attention to some specific cases.

82, The Particle in a Box

We now consider our first problem with a potential, albeit a rather artificial
+One:

V(x)=0, x| <L/2
=0, |x|=L/2 (5.2.1)

is potential (Fig. 5.1a) is called the box since there is an infinite potential barrier
in the way of a particle that tries to leave the region |x] <L/2. The eigenvalue
_equation in the X basis (which is the only viable choice) is

d’y 2m
—+—(E-V)y=0 5.2.2
PRERE ( )17 (5.2.2)

e begin by partitioning space into three regions I, II, and III (Fig. 5.1a). The
solution y is called y;, w1, and yy;r in regions I, II, and 111, respectively.

Consider first region III, in which ¥'=co. It is convenient to first consider the

case where V' is not infinite but equal to some V, which is greater than E. Now

{ We are assuming that the jump in y' is finite. This will be true even in the artificial potentials we will
%encounter. But can you think of a potential for which this is not true? (Think delta.)
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Eq. (5.2.2) becomes

d*ym 2m(Vo—E)

-2 S Yn=0 (5.2}
which is solved by

l[/n]=A e—“+Be"” (5.24
where x =[2m(V,— E) /1), ]

KF

Although 4 and B are arbitrary coefficients from a mathematical standpoi
we must set B=0 on physical grounds since B ¢** blows up exponentially as x—w

and such functions are not members of our Hilbert space. If we now let V-, we
see that

vi=0

It can similarly be shown that w;=0. In region II, since V=0, the solutions 4%
exactly those of a free particle:

yi=A exp[i(2mE/#°)'*x] + B exp[ — i(2mE/#*)"*x] (52
=4+ Be™,  k=Q2mE/R)"? 6.

It therefore appears that the energy eigenvalues are once again continuous as in
free-particle case. This is not so, for yyu(x)=y only in region II and not in all
space. We must require that wy; goes continuously into its counterparts yy and

as we cross over to regions I and III, respectively. In other words we require th:

vi(—=L/2)=yu(—L/2)=0 (5.2
ym(+L/2)=yu(+L/2)=0 (5.2

(We make no such continuity demands on v’ at the walls of the box since
jumps to infinity there.) These constraints applied to Eq. (5.2.6) take the form

Ao ML g2 5.2
4 e*2 4 B o2y (5.2

or in matrix form

2 L2 [ 4 0
&L/2 ~ikL)2 = (5.2.10)
M 2 B |0



Such an equation has nontrivial solutions only if the determinant vanishes:
o

3 ¢ kL — = —2j sin(kL) =0 (5.2.11)

that is, only if
{ k:nfﬂ’ n=0, £1, £2,... (5.2.12)

To find the corresponding eigenfunctions, we go to Egs. (5.2.92) and (5.2.9b). Since
only one of them is independent, we study just Eq. (5.2.9a), which says

¥ Ae "4 B 2=() (5.2.13)
Multiplying by ¢”"/%, we get

S A=—¢""B (5.2.14)
Since ¢"*=(—1)", Eq. (5.2.6) generates two families of solutions (normalized to

unity):
i 2 i nrw
. x
Va(x)= (Z) sm(—L—), neven (5.2.15)

: 2 V2 nnx
3 = (—) cos(—), n odd (5.2.16)
k. L L

Notice that the case n=0 is uninteresting since yo=0. Further, since y,= ¥,
for n odd and y,=—w—, for n even, and since eigenfunctions differing by an overall
factor are not considered distinct, we may restrict ourselves to positive nonzero n.
In summary, we have

2 2 X
y n
L =\=] cos|—1, n=1,3,517,... 52.17a
| v (L> ( L ) (5.2.172)
2 12 nrx
=(—) sin(——), n=2,4,6,... (5.2.17b)
L L

and from Egs. (5.2.6) and (5.2.12),

F= #k> _ h2n21122
1 2m  2mlL

(5.2.17c)

[It is tacitly understood in Eqs. (5.2.17a) and (5.2.17b) that x| <L/2.]
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We have here our first encounter with the quantization of a dynamical variable
Both the variables considered so far, X and P, had a continuous spectrum of eigenval
ues from — o to + oo, which coincided with the allowed values in classical mechanics
In fact, so did the spectrum of the Hamiltonian in the free-particle case. The partick
in the box is the simplest example of a situation that will be encountered agai
and again, wherein Schrodinger’s equation, combined with appropriate bounda
conditions, leads to the quantization of energy. These solutions are also exampl
of bound states, namely, states in which a potential prevents a particle from escapin
to infinity. Bound states are thus characterized by

y(x)—0

{ x| ~>oc

Bound states appear in quantum mechanics exactly where we expect them classically,
namely, in situations where V(% o) is greater than E.

The energy levels of bound states are always quantized. Let us gain some insigh
into how this happens. In the problem of the particle in a box, quantization resulted
from the requirement that yp completed an integral number of half-cycles within,
the box so that it smoothly joined its counterparts w; and wy; which vanished.
identically. Consider next a particle bound by a finite well, i.e., by a potential that:
jumps from 0 to Vo at |x] =L/2. We have already seen [Eq. (5.2.4)] that in the’
classically forbidden region (E< V), |x| = L/2) v is a sum of rising and falling expo-
nentials (as | x| —~c0) and that we must choose the coefficient of the rising exponential!
to be zero to get an admissible solution. In the classically allowed region (Jx|<
L/2) vy is a sum of a sine and cosine. Since V is everywhere finite, we demand that;
v and v’ be continuous at x==£L/2. Thus we impose four conditions on v, which-
has only three free parameters. (It may seem that there are four—the coefficients of
the two falling exponentials, the sine, and the cosine. However, the overall scale of”
w is irrelevant both in the eigenvalue equation and the continuity conditions, these’
being linear in v and y’'. Thus if say, v’ does not satisfy the continuity condition’
at x=L/2, an overall rescaling of y and y’ will not help.) Clearly, the continuity
conditions cannot be fulfilled except possibly at certain special energies. (See Exercise’
5.2.6 for details). This is the origin of energy quantization here.

Consider now a general potential (x) which tends to limits V. as x— 20 and
which binds a particle of energy E (less than both V.). We argue once again that
we have one more constraint than we have parameters, as follows. Let us divide
space into tiny intervals such that in each interval V(x) is essentially constant. As
x—+00, these intervals can be made longer and longer since V is stabilizing at its
asymptotic values V.. The right- and leftmost intervals can be made infinitely wide,.
since by assumption ¥ has a definite limit as x—>200. Now in all the finite intervals,
v has two parameters: these will be the coefficients of the sine/cosine if E>V or,
growing/falling exponential if E < V. (The rising exponential is not disallowed, since;
it doesn’t blow up within the finite intervals.) Only in the left- and rightmost intervals:
does v have just one parameter, for in these infinite intervals, the growing exponential!
can blow up. All these parameters are constrained by the continuity of y and y’ at:
each interface between adjacent regions. To see that we have one more constraint;
than we have parameters, observe that every extra interval brings with it two fr
parameters and one new interface, i.e., two new constraints. Thus as we go fro



intervals in the finite well to the infinite number of intervals in the arbitrary
tential, the constraints are always one more than the free parameters. Thus only
at special energies can we expect an allowed solution.
[Later we will study the oscillator potential, V'=1mo*x*, which grows without
bt as |x]—o0. How do we understand energy quantization here? Clearly, any
lowed v will vanish even more rapidly than before as | x| — o0, since ¥ — E, instead
of being a constant, grows quadratically, so that the particle is “even more forbidden
than before” from escaping to infinity. If E is an allowed energy,I we expect y to
“fall off rapidly as we cross the classical turning points Xxo= * (QE/ma®)'?. To a
:particle in such a state, it shouldn’t matter if we flatten out the potential to some
constant at distances much greater than |xo, ie., the allowed levels and eigen-
| functions must be the same in the two potentials which differ only in a region that
; the particle is so strongly inhibited from going to. Since the flattened-out potential
- has the asymptotic behavior we discussed earlier, we can understand energy quantiza-
: tion as we did before.]
Let us restate the origin of energy quantization in another way. Consider the
' search for acceptable energy eigenfunctions, taking the finite well as an example. If
. we start with some arbitrary values (xo) and v'(x0), at some point xo to the right
of the well, we can integrate Schrodinger’s equation numerically. (Recall the analogy
with the problem of finding the trajectory of a particle given its initial position and
velocity and the force on it.) As we integrate out to x—o0, y will surely blow up
. since yyy contains a growing exponential. Since y(Xo) merely fixes the overall scale,
“we vary y'(xo) until the growing exponential is killed. [Since we can solve the problem
analytically in region III, we can even say what the desired value of y'(xo) is: it is
given by y'(x0) =—Kkw(xo). Verify, starting with Eq. (5.2.4), that this implies B=
0.] We are now out of the fix as x— o0, but we are committed to whatever comes
out as we integrate to the left of xo. We wiil find that y grows exponentially till we
reach the well, whereupon it will oscillate. When we cross the well, v will again start
to grow exponentially, for v, also contains a growing exponential in general. Thus
there will be no acceptable solution at some randomly chosen energy. It can, however,
happen that for certain values of energy, v will be exponentially damped in both
regions [ and IIL. [At any point x} in region I, there is a ratio y'(x0)/ w(xp) for which
- only the damped exponential survives. The y we get integrating from region III will
not generally have this feature. At special energies, however, this can happen.] These
are the allowed energies and the corresponding functions are the allowed eigen-
| functions. Having found them, we can choose y(xo) such that they are normalized
to unity. For a nice numerical analysis of this problem see the book by Eisberg and
Resnick.$
It is clear how these arguments generalize to a particle bound by some arbitrary
potential: if we try to keep v exponentially damped as x——o0, it blows up as x>
 (and vice versa), except at some special energies. It is also clear why there is no
quantization of energy for unbound states: since the particle is classically allowed
at infinity, w oscillates there and so we have two more parameters, one from each
end (why?), and so two solutions (normalizable to 6(0)) at any energy.

1 We are not assuming E is quantized.
§R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Wiley,
New York (1974). See Section 5.7 and Appendix F.
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Let us now return to the problem of the particle in a box and discuss the f;
that the lowest energy is not zero (as it would be classically, corresponding to t
particle at rest inside the well) but #°z°/2mL?. The reason behind it is the uncertain
principle, which prevents the particle, whose position (and hence AX) is bound
by [x| <L/2, from having a well-defined momentum of zero. This in turn leads to
lower bound on the energy, which we derive as follows. We begin withi

2
=£— (5.21
2m
so that
(P
CH)= (521
2m

Now (P)>=0 in any bound state for the following reason. Since a bound state is
stationary state, (P) is time independent. If this (P> #0, the particle must (in th
average sense) drift either to the right or to the left and eventually escape to infinit
which cannot happen in a bound state.

Consequently we may rewrite Eq. (5.2.19) as

i

CH)

_(P=<PY)) _(AP)?
2m 2m

S i

%
If we now use the uncertainty relation (

AP- AX>F/2
we find
h2
H)>———
H> 8m(AX)*

Since the variable x is constrained by —L/2<x<L/2, its standard deviation ]

H

cannot exceed L/2. Consequently
(H>>H/2mIL?
In an energy eigenstate, {H > = E so that

E>#/2mL? (5.2.20

1 We are suppressing the infinite potential due to the walls of the box. Instead we will restrict x to

The actual ground-state energy E; happens to be 7> times as large as the lowe
range |x| <L/2.



bound. The uncertainty principle is often used in this fashion to provide a quick
order-of-magnitude estimate for the ground-state energy.

If we denote by |n) the abstract ket corresponding to w,(x), we can write the
propagator as

] . 2.2 72
- A1 - _i(flﬂ:n)} '
& U(r) E] [rny<nl exp[ A7) (5.2.21)

he matrix elements of U(?) in the X basis are then

HUMx)=Ulx, t; x)

0 . hZ 2.2
=Y. yulX)wi(x) em[—%(ﬁ)r} (5.2.22)
n=1

nlike in the free-particle case, there exists no simple closed expression for this sum.

Exercise 5.2.1.* A particle is in the ground state of a box of length L. Suddenly the box
fexpands (symmetrically) to twice its size, leaving the wave function undisturbed. Show that
the probability of finding the particle in the ground state of the new box is (8/37).

S Exercise 5.2.2.* (a) Show that for any normalized | >, {w|H|y>> E,, where E, is the
‘lowest-energy cigenvalue. (Hint: Expand |y in the eigenbasis of H.)

* (b) Prove the following theorem: Every attractive potential in one dimension has at least
sone bound state. Hint: Since ¥ is attractive, if we define ¥(00)=0, it follows that ¥(x)=
¥(x)] for all x. To show that there exists a bound state with E<0, consider

o 1/4
(2] e
¥

E(@)=(vuHlYod, H=—"——=5—|Vx)|
m dx

‘Show that E(a) can be made negative by a suitable choice of a. The desired result follows
from the application of the theorem proved above.

' Exercise 5.2.3.* Consider V(x)=—aV,d(x). Show that it admits a bound state of energy
#=—ma’V§ /2% . Are there any other bound states? Hint: Solve Schrédinger’s equation out-
side the potential for E<0, and keep only the solution that has the right behavior at infinity
and is continuous at x =0. Draw the wave function and see how there is a cusp, or a discontinu-
ous change of slope at x=20. Calculate the change in slope and equate it to

+& d2
I ()
_, \dx

(where ¢ is infinitesimal) determined from Schroédinger’s equation.
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Exercise 5.2.4. Consider a particle of mass m in the state {n) of a box of length L. Find
the force F=—J0E/JL encountered when the walls are slowly pushed in, assuming the particle
remains in the nth state of the box as its size changes. Consider a classical particle of energy
E, in this box. Find its velocity, the frequency of collision on a given wall, the momentum
transfer per collision, and hence the average force. Compare it to — JE/0L computed above,

Exercise 5.2.5.* If the box extends from x=0 to L (instead of —L/2 to L/2) show tha‘
v.(x)=(2/L)"? sin(arx/L), n=1,2,..., 00 and E,=# n’n*/2mL>.

Exercise 5.2.6.* Square Well Potential. Consider a particle in a square well potential: ‘

V(x)= {0’ ¥ <a ‘

Vo,  |xI>a |
Since when V,— oo, we have a box, let us guess what the lowering of the walls does to the
states. First of all, all the bound states (which alone we are interested in), will have E<V,,.
Second, the wave functions of the low-lying levels will look like those of the particle in a box,
with the obvious difference that y will not vanish at the walls but instead spill out with an
exponential tail. The eigenfunctions will still be even, odd, even, etc.

(1) Show that the even solutions have energies that satisfy the transcendental equation
ktanka=« (5.2.23)

while the odd ones will have energies that satisfy !‘

l

kcotka=—«x (5.2.24i

where k and ix are the real and complex wave numbers inside and outside the well, respectivel)uj
Note that k and « are related by

K+ k2 =2mV, /7 (5.2.2%)

Verify that as ¥, tends to oo, we regain the levels in the box.

(2) Equations (5.2.23) and (5.2.24) must be solved graphically. In the (a=ka, B=xd
plane, imagine a circle that obeys Eq. (5.2.25). The bound states are then given by th
intersection of the curve a tan a = f or a cot @ = —f with the circle. (Remember a and B arg
positive.) '

(3) Show that there is always one even solution and that there is no odd solution unl
Vo= #n?/8ma’. What is E when ¥, just meets this requirement? Note that the general result
from Exercise 5.2.2b holds.

5.3. The Continuity Equation for Probability

We interrupt our discussion of one-dimensional problems to get acquainted with
two concepts that will be used in the subsequent discussions, namely, those of the
probability current density and the continuity equation it satisfies. Since the probability
current concept will also be used in three-dimensional problems, we discuss here
particle in three dimensions. i



As a prelude to our study of the continuity equation in quantum mechanics, let
us recall the analogous equation from electromagnetism. We know in this case that
the total charge in the universe is a constant, that is

Q(?) =const, independent of time ¢ (5.3.1)

This is an example of a global conservation law, for it refers to the total charge
in the universe. But charge is also conserved locally, a fact usually expressed in the
form of the continuity equation

op(r, t .

WD __y.; (5.3.2)
ot

where p and j are the charge and current densities, respectively. By integrating this

equation over a volume ¥ bounded by a surface S, we get, upon invoking Gauss’s

law,

ij p(r, o) a’3r=—j V-jd3r=—j jrdS (5.3.3)
4 dt v v Sy

This equation states that any decrease in charge in the volume V is accounted for
by the flow of charge out of it, that is to say, charge is not created or destroyed in
any volume.

The continuity equation forbids certain processes that obey global conservation,
such as the sudden disappearance of charge from one region of space and its immedi-
ate reappearance in another.

In quantum mechanics the quantity that is globally conserved is the total prob-
ability for finding the particle anywhere in the universe. We get this result by
expressing the invariance of the norm in the coordinate basis: since

Ol (1)) =y O T (VD] w(0)) =y (0) v (0))

then

const =<y ()| ()= ”j Ly (Olx, y, 2)<x, y, zlw(t)) dx dy dz}

re

= ||| <v@iryrly (@) dr

LYY
rrr

= ||| v*C ow ) d’r

v
ree

. = ||| P(r,t)d’r (5.3.4)

I The range of integration will frequently be suppressed when obvious.
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This global conservation law is the analog of Eq. (5.3.1). To get the analog of
Eq. (5.3.2), we turn to the Schrodinger equation

5 OW n 2
B—=——Vy+V 535
: ot 2m ey (539
and its conjugate i
*
—in
ot 2m

hZ 2
- — Vy*+ py* (S.S.a

Note that ¥ has to be real if H is to be Hermitian. Multiplying the first of the
equations by y*, the second by v, and taking the difference, we get

8 #?
ih—(y*y) = —— (y*Vy - yVy*)
ot 2m

oP #i
——=—— V- (y*Vy—yVy*)
ot 2mi
oP
—=—V-j 53.
o i (
where
s fi * * ’
=— (v Vy—yVy7) (5.3.
2mi

is the probability current density, that is to say, the probability flow per unit time
per unit area perpendicular to j. To regain the global conservation law, we integrate
Eq. (5.3.7) over all space:

d
— | Pae,nyd’r=~| jdS 5.3,
dtj (r, ) dr Ll (3

EY]

where S, is the sphere at infinity. For (typical) wave functions which are normaliz-.
able to unity, r’/*y—0 as r—oo in order that | y*yr’ dr dQ is bounded, and the
surface integral of j on S, vanishes. The case of momentum eigenfunctions that do:
not vanish on S, is considered in one of the following exercises. '

Exercise 5.3.1. Consider the case where V=V, —iV;, where the imaginary part V; i
constant. Is the Hamiltonian Hermitian? Go through the derivation of the continuity equati
and show that the total probability for finding the particle decreases exponentially
e 2" Such complex potentials are used to describe processes in which particles are absor
by a sink.



v
Figure 5.2. The single-step potential. The dotted
line shows a more realistic potential idealized by ,/ f
the step, which is mathematically convenient. The T y Vo
. / o
total energy E and potential energy V' are L/ l
measured along the y axis. 0 x

Exercise 5.3.2. Convince yourself that if y=c{, where ¢ is constant (real or complex)
and ¥ is real, the corresponding j vanishes.

Exercise 5.3.3. Consider

i 3/2
5 Y i(pr)/ B
. Ve <2nﬁ) ¢

Find j and P and compare the relation between them to the electromagnetic equation j= pv,
v being the Velocity. Since p and j are constant, note that the continuity Eq. (5.3.7) is trivially
satisfied.

Exercise 5.34.* Consider y=Ae™/"+Be ™" in one dimension. Show that j=
(|A|2—|B|2)p/m. The absence of cross terms between the right- and left-moving pieces in ¥
allows us to associate the two parts of j with corresponding parts of y.

Ensemble Interpretation of j

Recall that j-dS is the rate at which probability flows past the area dS. If we
consider an ensemble of N particles all in some state y(r, 7), then Nj-dS particles
will trigger a particle detector of area dS per second, assuming that N tends to
infinity and that j is the current associated with y(r, #).

5.4. The Single-Step Potential: A Problem in Scattering}

Consider the step potential (Fig. 5.2)

5 V(x)=0 x<0 (regionl)
’ =V, x>0 (regionlIl) (5.4.1)

Such an abrupt change in potential is rather unrealistic but mathematically
convenient. A more realistic transition is shown by dotted lines in the figure.

Imagine now that a classical particle of energy E is shot in from the left (region
1) toward the step. One expects that if E> V,, the particle would climb the barrier
and travel on to region II, while if E<Vp, it would get reflected. We now compare
this classical situation with its quantum counterpart.

t This rather difficult section may be postponed till the reader has gone through Chapter 7 and gained
more experience with the subject. Tt is for the reader or the instructor to decide which way to go.
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a x=0 -x Figure 5.3. A schematic descriptio

-+ the wave function long before and |

155> a/lpg/m) Vo W after it hits the step. The area un
[w,|* is unity. The areas under |y

-— and |yr|’, respectively, are the p
N\ Ve abilities for reflection and trans

*x sion.

First of all, we must consider an initial state that is compatible with quant
principles. We replace the incident particle possessing a well-defined trajectory
a wave packet.I Though the detailed wave function will be seen to be irrelev
in the limit we will consider, we start with a Gaussian, which is easy to han
analytically§:

V/](x, 0) — W](x) - (n_AZ)—l/4 eiko(x+a) e—(x+a)2/2A2 (54‘

This packet has a mean momentum p,=fiky, a mean position {X>=—a (which
take to be far away from the step), with uncertainties

A fi
AX:W’ AP:2—]/—2'*A‘

We shall be interested in the case of large A, where the particle has essentially wi
defined momentum 7k, and energy E,~ #’k3/2m. We first consider the case Ey>

After a time t~a[po/m] ™", the packet will hit the step and in general break into
two packets: yg, the reflected packet, and yr, the transmitted packet (Fig. 5.3).
The area under |y z|> at large ¢ is the probability of finding the particle in region |
in the distant future, that is to say, the probability of reflection. Likewise the area
under |y 7|° at large ¢ is the probability of transmission. Our problem is to calculate
the reflection coefficient

R= f lyel*dx, t-w (543)
and transmission coefficient
T= J lyAd®dx, (- .

Generally R and T will depend on the detailed shape of the initial wave fun
If, however, we go to the limit in which the initial momentum is well defined (

1 A wave packet is any wave function with reasonably well-defined position and momentum.
§ This is just the wave packet in Eq. (5.1.14), displaced by an amount —a.



when the Gaussian in x space has infinite width), we expect the answer to depend
only on the initial energy, it being the only characteristic of the state. In the following
analysis we will assume that AX=A/2"?is large and that the wave function in k
space is very sharply peaked near ko.

We follow the standard procedure for finding the fate of the incident wave

packet, v;:

Step 1: Solve for the normalized eigenfunction of the step potential Hamiltonian,
ye(x).

Step 2: Find the projection a(E)=<Weyp.

Step 3: Append to each coefficient a(E) a time dependence e /" and get y(x, 1)
at any future time.

Step 4: Identify wr and yrin w(x, t—o0) and determine R and T using Egs. (5.4.3)
and (5.4.4).

Step 1. In region I, as V=0, the (unnormalized) solution is the familiar one:

ikix —ikyx 2mE V2
ye(x)=Ae""+Be ", ki = P (5.4.5)

In region II, we simply replace E by E—V, [see Eq. (5.2.2)],

@(E,—V_)]/ (5.46)

e(x)=C e+ D e, h=[ -

(We consider only E> V5; the eigenfunction with E< Vo will be orthogonal to v, as
will be shown on the next two pages.) Of interest to us are eigenfunctions with D=
0, since we want only a transmitted (right-going) wave in region I1, and incident
plus reflected waves in region 1. If we now impose the continuity of y and its
rivative at x=0; we get

A+B=C (5.4.7)
iky(A— B) =ik,C (5.4.8)

h anticipation of future use, we solve these equations to express B and C in terms
of A:

ki—k E'?—(E-Vy)'?

B:(‘ 2),4:( = (E ")1 2>A (5.4.9)
k,+ ks E'*+(E— Vo)
2k 2E'?

c=( : >A=( s 12>A (5.4.10)
ki +k; E'*+(E- V)"
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Note that if ,=0, B=0 and C= 4 as expected. The solution with energy E is

ve(x)=A4 [( e +§ e‘”‘"‘) 6(—x) +§e”‘2" e(x)} (5.4,

where

#(x)=1 ifx>0
=0 ifx<0

Since to each E there is a unique k; = + (2mE/#%)"/?, we can label the eigenstates
ki instead of E. Eliminating k, in favor of k,, we get

Vi, (X)= A[(exp(ikl X) +§ exp( — ik, x))ﬂ( - X)
+ g expli(ki —2mVy/ i l/zx]ﬂ(x)} (54.

Although the overall scale factor 4 is generally arbitrary (and the physics depe
only on B/A and C/A), here we must choose 4=(27) " because v, has to
properly normalized in the four-step procedure outlined above. We shall ve
shortly that 4= (27)"'" is the correct normalization factor.

Step 2. Consider next

atk) = (yilyr

=W {J‘w l:e_ik1x+(_§> eiklx:] 0(—X) W](X) dx

— Q0

+fw (g) e 9(x)w;(x) dx} (5.4.

Q0

The second integral vanishes (to an excellent approximation) since y,(x) is nonv
ishing far to the left of x=0, while #(x) is nonvanishing only for x> 0. Simila
the second piece of the first integral also vanishes since y; in k space is peak
around k= +k, and is orthogonal to (left-going) negative momentum states, [Wi
can ignore the 8(—x) factor in Eq. (5.4.13) since it equals 1 where y;(x)+0.] So

[\ pee
a(k,) = (-) f e F g, (x) dx
2n _

o0

A2 1/4

— —_— 2A2 i)
=(____) e (ki —kg)?A2/2 elkla (5.4.1
T



is just the Fourier transform of w;. Notice that for large A, a(k) is very sharply 171

peaked at ky=k,. This justifies our neglect of eigenfunctions with E<V,, for these SIMPLE
correspond to k; not near k. PROBLEMS IN
ONE DIMENSION

Step 3. The wave function at any future time ¢ is

vix, )= f a(ky) e E SRy (x) dk, (54.15)

2\1/* powo exy2 (l L \2A2
)T ol e e
x {eik‘xﬂ(—x) + (2) e **g(—x)

+(§> expli(ki —2mVy/ i '/zx]ﬂ(x)} dk, (5.4.16)

You can convince yourself that if we set ¢ =0 above we regain y,(x), which corrobor-
ates our choice 4=(2x)" "%

Step 4. Consider the first of the three terms. If 8(—x) were absent, we would
be propagating the original Gaussian. After replacing x by x+a in Eq. (5.1.15), and
inserting the €(—x) factor, the first term of w(x, f) is

e \T1/2 _ _ 2
0(_x)”-1/4(A+ii_t> expl: (xz+a hkot/}’i;l) :’
m 2A°(1+ ifit/mA°)

X expliik0<x+a-—ﬁk—°t)j|5 0(—x)G(—a, ko, t) (5.4.17)
2m

Since the Gaussian G(—a, k,, t) is centered at x = —a + fikot/m ~ fikot /m as t — o0,
and 6(—x) vanishes for x>0, the product 8G vanishes. Thus the initial packet has
disappeared and in its place are the reflected and transmitted packets given by the
next two terms. In the middle term if we replace B/A, which is a function of k;, by
its value (B/A)o at k, =k, (because a(k,) is very sharply peaked at k,=ko) and pull
it out of the integral, changing the dummy variable from k,; to —k,, it is easy to see
that apart from the factor (B/A4),0(—x) up front, the middle term represents the
free propagation of a normalized Gaussian packet that was originally peaked at x=
+2 and began drifting to the /eff with mean momentum —#k,. Thus

wr=0(—x)G(a, —ko, )(B/A)o (5.4.18)
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As t—o0, we can set 8(—x) equal to 1, since G is centered at x=a— fikot/m
— fikot/m. Since the Gaussian G has unit norm, we get from Eqgs. (5.4.3) and (5.49

_ , B Bz_lEol/z__(EO__ VO)I/Z{Z
R= Il//Rl dx=|~ —I 1/2 l/2‘
A 0 E() +(E0" V())
where
hZ 2
By =k (5.4.19
2m

This formula is exact only when the incident packet has a well-defined energy E,
that is to say, when the width of the incident Gaussian tends to infinity. But it is
excellent approximation for any wave packet that is narrowly peaked in moment
space.

To find T, we can try to evaluate the third piece. But there is no need to do
since we know that

R+T=1 (5.4

which follows from the global conservation of probability. It then follows that

T=1-

= 4E(}/2(E0_ Vo)l/2 = E'z (Eo— Vo)l/2
B+ (Eo—Vo)'*F Al E”

(5.4.21)

By inspecting Eqgs. (5.4.19) and (5.4.21) we see that both R and T are readily

expressed in terms of the ratios (B/A)y and (C/A), and a kinematical factor,

(Eo— Vy)'?/Ey’*. 1s there some way by which we can directly get to Eqs. (5.4.19)

and (5.4.21), which describe the dynamic phenomenon of scattering, from Egs

(5.4.9) and (5.4.10), which describe the static solution to Schrodinger’s equation?

Yes. ;
Consider the unnormalized eigenstate

Wio(X) =[Ag exp(ikox) + By exp(—iko x)]0(—x)

1/2
+ Cy exp [z(kﬁ -2—';’?) x}ﬁ(x) (5.4.

The incoming plane wave 4 ¢ has a probability current associated with it eq
to

Jr=140 Pk (5.42
m ;



while the currents associated with the reflected and transmitted pieces are

3

ik
Jr=|Bo> — (5.4.24)
m
and
(k2 —2mV, /%)
jr=1 G2 MO m"/ ) (5.4.25)

(Recall Exercise 5.3.4, which provides the justification for viewing the two parts of
the j in region I as being due to the incident and reflected wave functions.) In terms
of these currents

2

:
R:f]TR= A_O (5.4.26)
7 0
R 2 2
potr_ |G = 2mVo/i)'” |Gl (Bo=Ve)'” (5:427)
Jr 4o ko Ay Eol/2 o

Let us now enquire as to why it is that R and T are calculable in these two
ways. Recall that R and T were exact only for the incident packet whose momentum
was well defined and equal to #ik,. From Eq. (5.4.2) we see that this involves taking
the width of the Gaussian to infinity. As the incident Gaussian gets wider and wider
(we ignore now the A~/ factor up front and the normalization) the following things

happen:

(1) It becomes impossible to say when it hits the step, for it has spread out to be a
right-going plane wave in region L

(2) The reflected packet also gets infinitely wide and coexists with the incident one,
as a left-going plane wave.

(3) The transmitted packet becomes a plane wave with wave number
(k§—2mVo/#%)'* in region II.

In other words, the dynamic picture of an incident packet hitting the step and
disintegrating into two becomes the steady-state process described by the eigenfunc-
tion Eq. (5.4.22). We cannot, however, find R and T by calculating areas under
lyr|* and |yg|* since all the areas are infinite, the wave packets having been trans-
formed into plane waves. We find instead that the ratios of the probability currents
associated with the incident, reflected, and transmitted waves give us R and 7. The
equivalence between the wave packet and static descriptions that we were able to
demonstrate in this simple case happens to be valid for any potential. When we come
to scattering in three dimensions, we will assume that the equivalence of the two
approaches holds.
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Exercise 5.4.1 (Quite Hard). Evaluate the third piece in Eq. (5.4.16) and compare
resulting 7 with Eq. (5.4.21). [Hint: Expand the factor (ki —2mV,/#%)"/? near k, =k, keg
just the first derivative in the Taylor series.]

Before we go on to examine some of the novel features of the reflection a
transmission coefficients, let us ask how they are used in practice. Consider a gen
problem with some ¥V(x), which tends to constants V. and V_ as x— £ o0,
simplicity we take V.=0. Imagine an accelerator located to the far left (x—-—
which shoots out a beam of nearly monoenergetic particles with {P) =ik, tow

_the potential. The question one asks in practice is what fraction of the particles

get tran$mitted and what fraction will get reflected to x= —o0, respectively. In g
eral, the question cannot be answered because we know only the mean momenta
the particles and not their individual wave functions. But the preceding anal
shows that as long as the wave packets are localized sharply in momentum space, 1
reflection and transmission probabilities (R and T') depend only on the mean moment
and not the detailed shape of the wave functions. So the answer to the question rai
above is that a fraction R(ky) will get reflected and a fraction 7T(ko)=1— R(ke)
get transmitted. To find R and T we solve for the time-independent eigenfunctiol
of H=T+ V with energy eigenvalue E,= #k5/2m, and asymptotic behavior

—— A"+ B
X-—+—0C
kol X .
Yio(X) C oo

X~ 00

and obtain from it R=|B/A4|*> and T=|C/A|>. Solutions with this asympto
behavior (namely, free-particle behavior) will always exist provided V vanishes rah
idly enough as |x| - 0. [Later we will see that this means |x¥(x)| =0 as (x|—a)]
The general solution will also contain a piece D exp(—ikox) as x— oo, but we :3
D=0 here, for if a exp(ikox) is to be identified with the incident wave, it must o
produce a right-moving transmitted wave C ¢ as x— 0.

Let us turn to Egs. (5.4.19) and (5.4.21) for R and T. These contain many
nonclassical features. First of all we find that an incident particle with £, > V, gets
reflected some of the time. It can also be shown that a particle with E, >V}, incident
Jrom the right will also get reflected some of the time, contrary to classical
expectations.

Consider next the case E, < V. Classically one expects the particle to be reflected
at x=0, and never to get to region II. This is not so quantum mechanically. In
region 11, the solution to

d2W11 +2‘m
dx*  #

(Eo— Vo)yu=0

with Ep< ¥y is

1/2
- —kx 2m|(Ey— V,
win(x)=Ce™, Kz(_‘(_ig_o)')



(The growing exponential ¢ does not belong to the physical Hilbert space.) Thus
there is a finite probability for finding the particle in the region where its kinetic
energy Eo— Vo is negative. There is, however, no steady flow of probability current
into region I1, since yu(x)=CW, where  is real. This is also corroborated by the

fact the reflection coefficient in this case 1S

The fact that the particle can penetrate into the classically forbidden region leads
to an interesting quantum phenomenon called tunneling. Consider a modification of
Fig. 5.2, in which V=V, only between x=0 and L (region II) and is once again
zero beyond x = L (region III). If now a plane wave is incident on this barrier from
the left with E< Vj, there is an exponentially small probability for the particle to
get to region II1. Once a particle gets to region III, it is free once more and described
by a plane wave. An example of tunneling is that of & particles trapped in the nuclei
by a barrier. Every once in a while an a particle manages to penetrate the barrier
and come out. The rate for this process can be calculated given V, and L.

2

=1 (5.4.29)

2
(Eo)l/z— (Eo— Vo)l/2 _
(Eo)'/*+ (Eo—Vo)'?

ko“iK‘
kot ix

Exercise 5.4.2. (a)* Calculate R and T for scattering of a potential V(x)= Voad(x). (b)
Do the same for the case V=0 for |x|>a and V=V, for |x| <a. Assume that the energy is
positive but less than Vo.

Exercise 5.4.3. Consider a particle subject to a constant force f in one dimension. Solve
for the propagator in momentum space and get

! Ulp, 10, 0)=8(p—p —f1) €477/ (54.30)

Transform back to coordinate space and obtain

m \" i[m(x—x) 1 NS
) exp{ﬁ[——r+§fl(x%-x)—%]} (5.4.31)

Ux, 1; x',0)= (27rﬁit

[Hint: Normalize yz(p) such that (E|E"Y=8(E—E'). Note that E is not restricted to be
positive.]

5.5. The Double-Slit Experiment

Having learned so much quantum mechanics, it now behooves us to go back
and understand the double-slit experiment (Fig. 3.1). Let us label by I and II the
regions to the left and right of the screen. The incident particle, which must really
be represented by a wave packet, we approximate by a plane wave of wave number
k=p/#. The impermeable screen we treat as a region with V=00, and hence the
region of vanishing . Standard wave theory (which we can borrow from classical

glectromagnetism) tells us what happens in region I1: the two slits act as sources of
radially outgoing waves of the same wavelength. These two waves interfere on the
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176 line AB and produce the interference pattern. We now return to quantum mechanic
CHAPTER 5 and interpret the intensity | w|? as the probability density for finding the particle.
5.6. Some Theorems
Theorem 15. There is no degeneracy in one-dimensional bound states.

Proof. Let y, and y, be two solutions with the same eigenvalue E:

—hz dzllll

— —+Vy,=EF 5.6
o dy? vi=Ey, ( {
—# d?y, '
eV yy,=E 5,
2m dx* v v (

Multiply the first by y», the second by y, and subtract, to get

dzl//2 d2|//1
— =0
Vi dx* v ax*

or

d{ dy, dwl)
—_— ——— — = 0
dx (wl dx & dx
so that
dy, dy,
—— Y, = 5.
v dx v dx ¢ ¢
To find the constant ¢, go to |x|— oo, where y, and v, vanish, since they descril
6.

bound states by assumption.{ It follows that c=0. So

1 1
—dy;=—dy,
Vi

W2
log wi=log w>+d (d is a constant)

vi=e'y, (5.

I The theorem holds even if y vanishes at either +oo or —oo. In a bound state it vanishes at both
But one can think of situations where the potential confines the wave function at one end but not
other.



Thus the two eigenfunctions differ only by a scale factor and represent the same
state. Q.E.D.

What about the free-particle case, where to every energy there are two degenerate
solutions with p= + (2mE/#%)"/*? The theorem doesn’t apply here since w,(x) does
not vanish at spatial infinity. [Calculate ¢ in Eq. (5.6.3).]

Theorem 16. The eigenfunctions of H can always be chosen pure real in the
coordinate basis.

Proof. If

-7 d? ]
—~~+V n=En n
[2m e (x) v v

then by conjugation

__hZ 2

d
' L v |vE=Ew
H [2771 dx’ (X)]l// v

Thus v, and )} are eigenfunctions with the same eigenvalue. It follows that the real
and imaginary parts of y,,

_Watyr
’ 2

and

are also eigenfunctions with energy £. Q.E.D.

The theorem holds in higher dimensions as well for Hamiltonians of the above
form, which in addition to being Hermitian, are real. Note, however, that while
Hermiticity is preserved under a unitary change of basis, reality is not.

If the problem involves a magnetic field, the Hamiltonian is no longer real in
the coordinate basis, as is clear from Eq. (4.3.7). In this case the eigenfunctions
cannot be generally chosen real. This question will be explored further at the end of
Chapter 11.

Returning to one dimension, due to nondegeneracy of bound states, we must
have

vi=cy,, ¢, a constant
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v=y,+iy,=(1+ic)y,=Cy,

Since the overall scale ¢ is irrelevant, we can ignore it, i.e., work with real eige
functions with no loss of generality. !

This brings us to the end of our study of one-dimensional problems, except fof
the harmonic oscillator, which is the subject of Chapter 7.



The Classical Limit

It is intuitively clear that when quantum mechanics is applied to a macroscopic
system it should reproduce the results of classical mechanics, very much the way that
relativistic dynamics, when applied to slowly moving (v/c« 1) objects, reproduces
Newtonian dynamics. In this chapter we examine how classical mechanics is regained
from quantum mechanics in the appropriate domain. When we speak of regaining
classical mechanics, we refer to the numerical aspects. Qualitatively we know that
the deterministic world of classical mechanics does not exist. Once we have bitten
the quantum apple, our loss of innocence is permanent.

We commence by examining the time evolution of the expectation values. We
find

d d
& <Q>—Zt <y|Qw>

= (GiQIy)+ plQy) + <yl Qi (6.1)

In what follows we will assume that Q has no explicit time dependence. We will
therefore drop the third term {y|Q|w>. From the Schrodinger equation, we get

—i
iy=—H
Lo =—Hlv>
and from its adjoint,

=t
<l//|—h<v/|H

1 If you are uncomfortable differentiating bras and kets, work in a basis and convince yourself that this
E step is correct.
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Feeding these into Eq. (6.1) we get the relation
4 <Q>~(j)< e, Hlw)
ar p Yide, '4

Y
—(h)ﬂQ,H])

_—

which is called Ehrenfest’s theorem.
Notice the structural similarity between this equation and the correspondi
one from classical mechanics:

do
7[-—{(1), f} (6

We continue our investigation to see how exactly the two mechanics are related.
us, for simplicity, discuss a particle in one dimension. If we consider Q=X we g

(=2

Hy= (%’) (X, HY (

If we assume

2

P
_5’;+ V(X)
then
(Ky= (—;—’) (X, P2/2m])

Now

[X, P1=P[X, P)+[X, PIP  [from Eq. (1.5.10)]

=2ihiP

so that

Hy=22 (63)
m



The relation Xx=p/m of classical mechanics now appears as a relation among the
mean values. We can convert Eq. (6.5) to a more suggestive form by writing

p_on

i m oP
where 0H /0P is a formal derivative of H with respect to P, calculated by pretending
that H, P, and X are just ¢ numbers. The rule for finding such derivatives is just as

in calculus, as long as the function being differentiated has a power series, as in this
case. We now get, in the place of Eq. (6.5),

, oH
X>= <5> (6.6)

Consider next

. 1
(Py=—_L[P,H])
ih

T et o

1
=— ([P, VXD
ifi
To find [P, V(X)] we go to the X basis, in which
L d
P—~ii— and V(X)-V(x)
dx
d for any y(x),

. d LA
[—zh o V(x)]v/(X)— iy

e conclude that in the abstract,

[P, V(X)]=—if %/ (6.7)

vhere dV/dX is again a formal derivative. Since dV/dX =0H/0X, we get

sy ( _2H
<P>—< aX> (6.8)

fThe similarity between Eqs. (6.6) and (6.8) and Hamilton’s equations is rather strik-
:ing. We would like to see how the quantum equations reduce to Hamilton’s equations
when applied to a macroscopic particle (of mass 1 g, say).

£
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First of all, it is clear that we must consider an initial state that resembles tﬂ
states of classical mechanics, i.e., states with well-defined position and momentu
Although simultaneous eigenstates of X and P do not exist, there do exist states
which we can think of as approximate eigenstates of both X and P. In these states,
labeled |xppoA), (XD =x, and {P)>=po, with uncertainties AX =A and AP~M/A,
both of which are small in the macroscopic scale. A concrete example of such a sta
is

1/4

1 .

|xopoA>wxo,po,A=(—A2) elPor g (69
r

If we choose A~10""* cm, say, which is the size of a proton, AP~10"" g cm/sec.
For a particle of mass 1 g, this implies AV~ 10""* cm/sec, an uncertainty far below
the experimentally detectable range. In the classical scale, such a state can be said
to have well-defined values for X and P, namely, x, and p,, since the uncertainties
(fluctuations) around these values are truly negligible. If we let such a state evolve
with time, the mean values xo(7) and po(z) will follow Hamilton’s equations, once
again with negligible deviations. We establish this result as follows.

Consider Eqgs. (6.6) and (6.8) which govern the evolution of (X) =xqand (P)=
Po- These would reduce to Hamilton’s equations if we could replace the mean values
of the functions on the right-hand side by the functions of the mean values:

. 0H(X, P 0 oA
e =< (X, )> N jl _0#(x0, p0) (610)
opP OP(x=x0,P=po) apo
and
. o0H 0 0H (xo,
po=<P>=—<—~>:—£] A (X0 po) (6.11)
6X X (X =x0,P=pp) 5)(()

If we consider some function of X and P, we will find in the same approximation
(X, P)) ~Q(xy, po) = @ (X0, Po) (6.12)

Thus we regain classical physics as a good approximation whenever it is a good
approximation to replace the mean of the functions H/0P, —0H/0X, and Q(X, P)
by the functions of the mean. This in turn requires that the fluctuations about the
mean have to be small. (The result is exact if there are no fluctuations.) Take as a
concrete example Eqs. (6.10) and (6.11). There is no approximation involved in the
first equation since (OH/dP) is just (P/m)=py/m. In the second one, we need
approximate {0H/0X)>={dV/dX>={V'(X)) by V'(X=Xx,). To see when this is
good approximation, let us expand ¥’ in a Taylor series around x,. Here it
convenient to work in the coordinate basis where V(X )= ¥{(x). The series is

V'(x) = V'(x0) + (x = x0) V" (x0) +3(x = x0)" V"' (x0) + - - -



Let us now take the mean of both sides. The first term on the right-hand side, which
alone we keep in our approximation, corresponds to the classical force at x,, and
thus reproduces Newton’s second law. The second vanishes in all cases, since the
mean of x—x, does. The succeeding terms, which are corrections to the classical
approximation, represent the fact that unlike the classical particle, which responds
only to the force F=—V" at xg, the quantum particle responds to the force at
neighboring points as well. (Note, incidentally, that these terms are zero if the poten-
tial is at the most quadratic in the variable x.) Each of these terms is a product of
two factors, one of which measures the size or nonlocality of the wave packet and
the other, the variation of the force with x. (See the third term for example.) At an
intuitive level, we may say that these terms are negligible if the force varies very little
over the “size” of the wave packet. (There is no unique definition of “‘size.”” The
uncertainty is one measure. We see above that the uncertainty squared has to be
much smaller than the inverse of the second derivative of the force.) In the present
case, where the size of the packet is of the order of 107" cm, it is clear that the
classical approximation is good for any potential that varies appreciably only over
macroscopic scales.

There is one apparent problem: although we may start the system out in a state
with A~10"" cm, which is certainly a very small uncertainty, we know that with
passing time the wave packet will spread. The uncertainty in the particle’s position
will inevitably become macroscopic. True. But recall the arguments of Section 5.1.
We saw that the spreading of the wave packet can be attributed to the fact that any
initial uncertainty in velocity, however small, will eventually manifest itself as a giant
uncertainty in position. But in the present case (AV~10""*cm/sec) it would take
300,000 years before the packet is even a millimeter across! (It is here that we invoke
the fact that the particle is macroscopic: but for this, a small AP would not imply
a small AV.) The problem is thus of academic interest only; and besides, it exists in
classical mechanics as well, since the perfect measurement of velocity is merely an
idealization.

There remains yet another question. We saw that for a macroscopic particle pre-
pared in a state | xopoA), the time evolution of x; and py will be in accordance with
Hamilton’s equations. Question: While it is true that a particle in such a conveniently
prepared state obeys classical mechanics, are these the only states one encounters in
classical mechanics? What if the initial position of the macroscopic particle is fixed
to an accuracy of 107" cm? Doesn’t its velocity now have uncertainties that are
classically detectable? Yes. But such states do not occur in practice. The classical
physicist talks about making exact position measurements, but never does so in
practice. This is clear from the fact that he uses light of a finite frequency to locate
the particle’s positions, while only light of infinite frequency has perfect resolution.
For example light in the visible spectrum has a wavelength of A~107" cm and thus
the minimum AX is ~107° cm. If one really went towards the classical ideal and
used photons of decreasing wavelength, one would soon find that the momentum of
the macroscopic particle is affected by the act of measuring its position. For example,
by the time one gets to a wavelength of 107" cm, each photon would carry a momen-
tum of approximately 1 g cm/sec and one would see macroscopic objects recoiling
under their impact.

In summary then, a typical macroscopic particle, described classically as possess-
ing a well-defined value of x and p, is in reality an approximate eigenstate |xopoA),
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where A is at least 107> cm if visible light is used to locate the particle. The quantum
equations for the time evolution of these approximate eigenvalues x, and p, reduce
to Hamilton’s equations, up to truly negligible uncertainties. The same goes for any
other dynamical variable dependent on x and p.

We conclude this chapter by repeating an earlier observation to underscore its
importance. Ehrenfest’s theorem does not tell us that, in general, the expectation
values of quantum operators evolve as do their classical counterparts. In particular,
{X>=xp and {P)=p, do not obey Hamilton’s equations in all problems. For them
to obey Hamilton’s equations, we must be able to replace the mean values (expecta-
tion values) of the functions 0H/dP and 0H/2X of X and P by the corresponding
functions of the mean values {(X>=x, and {(P)>=p,. For Hamiltonians that are at
the most quadratic in X and P, this replacement can be done with no error for all
wave functions. In the general case, such a replacement is a poor approximation
unless the fluctuations about the means x, and py are small. Even in those cases
where xo and p, obey classical equations, the expectation value of some dependent
variable Q(X, P) need not, unless we can replace {Q(X, P)) by Q({X), (P))f;i
G)(.X'(), po) fé

Example 6.1. Consider (Q(X))>, where Q=X?, in a state given by y(x)=
A expl— (x—a)?/2A%]. Is {<Q(X)>=Q({X>)? No, for the difference between the twg
is (XY —<X)*=(AX)*#0.




The Harmonic Oscillator

7.1. Why Study the Harmonic Oscillator?

In this section I will put the harmonic oscillator in its place—on a pedestal. Not
only is it a system that can be exactly solved (in classical and quantum theory) and
a superb pedagogical tool (which will be repeatedly exploited in this text), but it is
also a system of great physical relevance. As will be shown below, any system fluctu-
ating by small amounts near a configuration of stable equilibrium may be described
either by an oscillator or by a collection of decoupled harmonic oscillators. Since
the dynamics of a collection of noninteracting oscillators is no more complicated
than that of a single oscillator (apart from the obvious N-fold increase in degrees
of freedom), in addressing the problem of the oscillator we are actually confronting
the general problem of small oscillations near equilibrium of an arbitrary system.

A concrete example of a single harmonic oscillator is a mass m coupled to a
spring of force constant k. For small deformations x, the spring will exert the force
given by Hooke’s law, F=—kx, (k being its force constant) and produce a potential
V=3kx’. The Hamiltonian for this system is

2

1
H=T+V=L" i~ mo?x? (7.1.1)
2m 2

where @ = (k/m)'/* is the classical frequency of oscillation. Any Hamiltonian of the
above form, quadratic in the coordinate and momentum, will be called the harmonic
oscillator Hamiltonian. Now, the mass-spring system is just one among the following
family of systems described by the oscillator Hamiltonian. Consider a particle moving
in a potential ¥(x). If the particle is placed at one of its minima xp, it will remain
there in a state of stable, static equilibrium. (A maximum, which is a point of unstable
static equilibrium, will not interest us here.) Consider now the dynamics of this
particle as it fluctuates by small amounts near x=x,. The potential it experiences
may be expanded in a Taylor series:
2
V(x)=V(xo)+éZ (x—x0)+lﬁz/ (x—xp)*+- - - (7.1.2)
dx |y, 2! dx” |y,
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Now, the constant piece V(x,) is of no physical consequence and may
dropped. {In other words, we may choose V(x;) as the arbitrary reference point f
measuring the potential.] The second term in the series also vanishes since xo i§
minimum of V(x), or equivalently, since at a point of static equilibrium, the forcg
~dV /dx, vanishes. If we now shift our origin of coordinates to xo Eq. (7.1.2) read

2
vy =— 9

, 1dV
nach’ T ae

3 o e .
Ox 3 i x + (7.1

V]

For small oscillations, we may neglect all but the leading term and arrive at t
potential (or Hamiltonian) in Eq. (7.1.1), d*V/dx’ being identified with k=mw
(By definition, x is small if the neglected terms in the Taylor series are small compar
to the leading term, which alone is retained. In the case of the mass-spring syst
x is small as long as Hooke’s law is a good approximation.)

As an example of a system described by a collection of independent oscillatod
consider the coupled-mass system from Example 1.8.6. (It might help to refresh you
memory by going back and reviewing this problem.) The Hamiltonian for this syst
is

po, ol
H =t = ma[XF+ X5+ (x,— x2)7]
2m 2m 2
=1+ A+ 3me*(x, — x,)° (7.1

Now this s is not of the promised form, since the oscillators corresponding to
and #, (associated with the coordinates x, and x,) are coupled by the (x;—x,)
term. But we already know of an alternate description of this system in which it ca
be viewed as two decoupled oscillators. The trick is of course the introduction o
normal coordinates. We exchange x, and x, for

X1+ x .
x1= 12‘/2 2 (7158
and
Xn= X_____lzl“/jcz (7.1.5b

By differentiating these equations with respect to time, we get similar ones for th
velocities, and hence the momenta. In terms of the normal coordinates (and th
corresponding momenta), 1

pi 1 22, P35 ‘

”=%1+”11=’—+_m(0 X1+d+‘_m(0 X1 (71.6

2m 2 2m 2 1

Thus the problem of the two coupled masses reduces to that of two uncouple
oscillators of frequencies w;=® = (k/m)'* and wu=23"%w=(3k/m)'*. |
?



-
Let us rewrite Eq. (7.1.4) as

1 2 2 12 2
—_Z Zpiaijpj+_2 Z x:Vix; (7.1.7)

m =1 j=1 2,514

where ¥, are elements of a real symmetric (Hermitian) matrix ¥ with the following
values:

* Vii=Vyp=2mo>  Vip=Va=-mo’ (7.1.8)

In switching to the normal coordinates x; and xn (and p; and py;), we are going
t0 a basis that diagonalizes ¥ and reduces the potential energy to a sum of decoupled
terms, one for each normal mode. The kinetic energy piece remains decoupled in
both bases.

Now, just as the mass-spring system was just a representative element of a
family of systems described by the oscillator Hamiltonian, the coupled-mass system
is also a special case of a family that can be described by a collection of coupled
harmonic oscillators. Consider a system with N Cartesian degrees of freedom
x, ... Xy, with a potential energy function ¥(x,, . .., xn). Near an equilibrium point
(chosen as the origin), the expansion of ¥, in analogy with Eq. (7.1.3), is

1y > &V
s V(X1 . XN):' Z Z xin+' . (719)
2504 0x; 0x;lo
For small oscillations, the Hamiltonian is
! N N iai‘ 1NN
; w=y TP S x Vi (7.1.10)
: =1 j=1 2m 25y =
where
i %4 o’V
=T = =V, (7.1.11)
0x; 0xjlo  0X; 0x;lo

are the elements of a Hermitian matrix V. (We are assuming for simplicity that the
masses associated with all N degrees of freedom are equal.) From the mathematical
theory of Chapter 1, we know that there exists a new basis (i.e., a new set of
coordinates xi, X, ...) which will diagonalize ¥ and reduce # to a sum of N
decoupled oscillator Hamiltonians, one for cach normal mode. Thus the general
problem of small fluctuations near equilibrium of an arbitrary system reduces to the
study of a single harmonic oscillator.

This section concludes with a brief description of two important systems which
are described by a collection of independent oscillators. The first is a crystal (in three
dimensions), the atoms in which jiggle about their mean positions on the lattice. The
second is the electromagnetic field in free space. A crystal with Ny atoms (assumed
to be point particles) has 3N, degrees of freedom, these being the displacements from
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equilibrium points on the lattice. For small oscillations, the Hamiltonian willb’
quadratic in the coordinates (and of course the momenta). Hence there will exist
3N, normal coordinates and their conjugate momenta, in terms of which s will be
a decoupled sum over oscillator Hamiltonians. What are the corresponding normal
modes? Recall that in the case of two coupled masses, the normal modes corre-
sponded to collective motions of the entire system, with the two masses in step in
one case, and exactly out of step in the other. Likewise, in the present case, thy
motion is collective in the normal modes, and corresponds to plane waves travelin
across the lattice. For a given wavevector k, the atoms can vibrate parallel to
(longitudinal polarization) or in any one of the two independent directions perpendi
ular to k (transverse polarization). Most books on solid state physics will tell yor
why there are only N, possible values for k. (This must of course be so, for wi
three polarizations at each k, we will have exactly 3N, normal modes.) The mod
labeled (k, A), where A is the polarization index (A= 1, 2, 3), form a complete basi
for expanding any state of the system. The coefficients of the expansion, a(k, 4),
the normal coordinates. The normal frequencies are labeled o (k, A).f

In the case of the electromagnetic field, the coordinate is the potential A(r, !
at each point in space. [A(r, 1) is the “velocity” corresponding to the coordinat
A(r, t).] The normal modes are once again plane waves but with two differences:
there is no restriction on k, but the polarization has to be transverse. The quantumy
theory of the field will be discussed at length in Chapter 18.

7.2. Review of the Classical Oscillator

The equations of motion for the oscillator are, from Eq. (7.1.1),

M (721
op m
= ——J—{i:“ —ma’x (7.2
ox

By eliminating p, we atrive at the familiar equation
£+ 0’x=0
with the solution

x(f)=A cos wt+ Bsin @wt=x, cos(wt+ ¢) (7.2.

where x, is the amplitude and ¢ the phase of oscillator. The conserved en
associated with the oscillator is

E=T+ V=13m¥’>+ 1mo*x*= 3mo’x} (7.24

1 To draw a parallel with the two-mass system, (k, A) is like I or II, a(k, 4) is like x; or x;; and w(k,
is like (k/m)""* or (3k/m)'/%.



Since X, is a continuous variable, so is the energy of the classical oscillator. The
lowest value for E is zero, and corresponds to the particle remaining at rest at the
origin.

By solving for x in terms of E and x from Eq. (7.2.4) we obtain

%=QE/m- 0% *=o(x5—x)""? (7.2.5)
which says that the particle starts from rest at a turning point (x=%x,), picks up
speed till it reaches the origin, and slows down to rest by the time it reaches the
other turning point.

You are reminded of these classical results, so that you may readily compare
and contrast them with their quantum counterparts.

7.3. Quantization of the Oscillator (Coordinate Basis)

We now consider the quantum oscillator, that is to say, a particle whose state
vector |y obeys the Schrodinger equation

d
59y =
zdt|w> Hly)
with

P o1
H=]f(x—>X,p—>P)=2;+Emw2X2
m

As observed repeatedly in the past, the complete dynamics is contained in the propa-
gator U(¢), which in turn may be expressed in terms of the eigenvectors and eigenval-
ues of H. In this section and the next, we will solve the eigenvalue problem in the
X basis and the H basis, respectively. In Section 7.5 the passage from the H basis
to the X basis will be discussed. The solution in the P basis, trivially related to the
solution in the X basis in this case, will be discussed in an exercise.

With an eye on what is to follow, let us first establish that the eigenvalues of H
cannot be negative. For any |y,

1 1
(CHY=— (y|PYy) +-mo’(y | X2y

2m 2
1 ¥ 12 t

=— (y|P'Ply)y+-ma (Yl X X|y)
2m 2
1 1,

=-— (Py|Py)+-mo{Xy|Xy)=0
2m 2

since the norms of the states | Py > and |Xy) cannot be negative. If we now set |y
equal to any eigenstate of H, we get the desired result.
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Armed with the above result, we are now ready to attack the problem in the X
basis.
We begin by projecting the eigenvalue equation,

(PZ 1, Z)
—+-mo*X* |E>=E|E> (7.3.),
2m 2 ‘

onto the X basis, using the usual substitutions

X-x

d
P——iti —
X

[ED—ye(x)
and obtain

h2 d2
- —+—-mo? 2) =FE 732
( e 2T YTV (7.32)

(The argument of y and the subscript E are implicit.)
We can rearrange this equation to the form

dy  m

1
it (E—E mwzxz)y/ =0 (7.33)

We wish to find all solutions to this equation that lie in the physical Hilbert space
(of functions normalizable to unity or the Dirac delta function). Follow the approac
closely—it will be invoked often in the future.

The first step is to write Eq. (7.3.3) in terms of dimensionless variables. Wi
look for a new variable y which is dimensionless and related to x by

x=by (7.3.

where & is a scale factor with units of length. Although any length & (say the radi
of the solar system) will generate a dimensionless variable y, the idea is to choo
the natural length scale generated by the equation itself. By feeding Eq. (7.3.4) int
Eq. (7.3.3), we arrive at

d*y 2mEV>  nmo’bt
d—yv2/+ = v— = Vy=0 (7.3.



The last terms suggests that we choose

1/2
b=<—ﬁ—) (1.3.6)

me
Let us also define a dimensionless variable € corresponding to E:

mEb® E
= 7 =';;; (7.3.7)

&

(We may equally well choose &£ =2mEb*/#’. Constants of order unity are not uniquely
suggested by the equation. In the present case, our choice of ¢ is in anticipation of
the results.) In terms of the dimensionless variables, Eq. (7.3.5) becomes

y'+Q2e~y)y=0 (7.3.8)

where the prime denotes differentiation with respect to y.

Not only do dimensionless variables lead to a more compact equation, they also
provide the natural scales for the problem. By measuring x and E in units of
(i/mw)'”* and fim, which are scales generated intrinsically by the parameters enter-
ing the problem, we develop a feeling for what the words ““‘small”” and “large” mean:
for example the displacement of the oscillator is large if y is large. If we insist on
using the same units for all problems ranging from the atomic physics to cosmology,
we will not only be dealing with extremely large or extremely small numbers, we will
also have no feeling for the size of quantities in the relevant scale. (A distance of
107 parsecs, small on the cosmic scale, is enormous if one is dealing with an atomic
system.)

The next step is to examine Eq. (7.3.8) at limiting values of y to learn about
the solution in these limits. In the limit y— o0, we may neglect the 2gy term and
obtain

vy —yy=0 (7.3.9)

¢ solution to this equation in the same limit is

Wszm e;(:yZ/Z
W"=Ay'"+2-ei”2/{lizmjl+m(m4_l)]
y y
N Aym+28:t:y2/2=y2w

y—+x©

191

THE HARMONIC
OSCILLATOR



192
CHAPTER 7

where wc;z have dropped all but the leading power in y as y— oo. Of the two possibili
m +yt/2

ies y™ e**/2, we pick y" e/, for the other possibility is not a part of the physi
Hilbert space since it grows exponent1ally as y—oo.

Consider next the y—0 limit. Equation (7.3.8) becomes, upon dropping the *
term,

v +2ey =0
which has the solution

y =4 cos[2¢ey] + B sin[/2¢&y]

Since we have dropped the 3 term in the equation as being too small, consisten
demands that we expand the cosine and sine and drop terms of order y* and beyon
We then get

y—— A+cy+ O(yz)
y—0

where ¢ is a new constant [=B(2¢)"/?).
We therefore infer that y is of the form

y(y)=u(y) e (131
where u approaches 4 +cy (plus higher powers) as y—0, and y™ (plus lower powers

as y—o0, To determine u( y) completely, we feed the above ansazz into Eq. (7.3 §]
and obtain

u'—2yu' +(2e~Nu=0 (7.3.11)

This equation has the desired features (to be discussed in Exercise 7.3.1) that 1nd1cat§
that a power-series solution is possible, i.c., if we assume

u(y)= i Cy’ (731

n=0

the equation will determine the coefficients. [The series begins with #=0, and n
some negative n, since we know that as y—0, u—4 +cy+ 0(3?).] Feeding this seri
into Eq. (7.3.11) we find

E Cin(n—1)y" > =2ny"+ (26— 1)y"1=0 (73.

n=0

Consider the first of three pieces in the above series:

Y Cnn—-1)y"?

n=0



Due to the n(n— 1) factor, this series also equals 193
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n=

In terms of a new variable m=n—2 the series becomes

i C,,,+2(m+2)(m+1))/"z§ C,sa(n+2)(n+ 1)y

m=0

since m is a dummy variable. Feeding this equivalent series back into Eq. (7.3.13)
we get

P[Cosa(n+2)(n+ 1)+ Cu(26—1-21)]=0 (7.3.14)

0

118

n

Since the functions y" are linearly independent (you cannot express )" as a linear
combination of other powers of y) each coeflicient in the linear relation above must
vanish. We thus find

2n+1-2
Cn+2= Cn Ln_—_—g—) (7315)
(n+2)(n+1)
Thus for any Cp and C,, the recursion relation above generates Ca, Ca, Ce, - - - and
G, Cs, G, . .. . The function u(y) is given by

(-2e)* , (1-20) (4+1-2¢) +]

u(y)=Co[1+(0+2)(o+ 1) (0+2)(0+1) 2+2)(2+ D’

—_— 3 —_— —
l\:y+(2+1 2e)y’, (2+1-29) (6+1-2¢) y5+...] (7.3.16)
A+2)(1+1) (1+2(1+1) 3+2)(3+1)

where C, and C; are arbitrary.

It appears as if the energy of the quantum oscillator is arbitrary, since & has
not been constrained in any way. But we know something is wrong, since we saw at
the outset that the oscillator eigenvalues are nonnegative. The first sign of sickness
in our solution, Eq. (7.3.16), is that u(y) does not behave like y” as y—oo (as
deduced at the outset) since it contains arbitrarily high powers of y. There is only
one explanation. We have seen that as y— oo, there are just two possibilities

+y2/2

y(y)——)"e
y— 0o

If we write y(p)=u(y) e "/, then the two possibilities for u(y) are

' u(y) ——2 )" ot "
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Clearly u(y) in Eq. (7.3.16), which is not bounded by any finite power of y as y-u,
corresponds to the latter case. We may explicitly verify this as follows.

Consider the power series for u(y) as y—oo. Just as the series is controlled by
Cy (the coefficient of the lowest power of y) as y—0, it is governed by its coeflicients
C,—» as y— o0. The growth of the series is characterized by the ratio [see Eq. (7.3.15)]

. 2
Cora 2 (7.3.
C, n=® n

Compare this to the growth of " ¢””. Since

2k +m

<y
mey2=
¥ L7

C.=coefficient of y"=1/k!; with n=2k+m or k=(n—m)/2. Likewise

1
[(n+2—m)/2]!

Cn+2=

Ca+a L [m—m)/2)! - 1 ~2
C, " [(n+2-m)/2) (n—m+2)/2 n

In other words, u(y) in Eq. (7.3.16) grows as y™ ¢”’, so that y(y)~)"e” e
2 . . . . . . . .

y™ e"/?, which is the rejected solution raising its ugly head! Our predicament is now

reversed: from finding that every ¢ is allowed, we are now led to conclude that no

¢ is allowed. Fortunately there is a way out. If ¢ is one of the special values

+1
s,,=2"2 . on=0,1,2,... (7.3.18)

the coefficient C,.» (and others dependent on it) vanish. If we choose C;=0 when
n is even (or Co=0 when n is odd) we have a finite polynomial of order »n which
satisfies the differential equation and behaves as " as y— o0

Cot Gy’ + Cop'+- - -+ Cy"

. } er? (1319)
Cy+Cp’+Csy°+- - -+ Cy”

w(y)=u(y) e’ Z={

Equation (7.3.18) tells us that energy is quantized: the only allowed values for
E=¢hw (ie., values that yield solutions in the physical Hilbert space) are

E,=(n+1)kiow, n=0,1,2,... (7.3.20)



For each value of n, Eq. (7.3.15) determines the corresponding polynomials of nth
order, called Hermite polynomials, H,(y):

Ho(}’)=1
Hy(y)=2
Hy(y)=-2(1-2y°) (7.3.21)

Hy(y)=—12(y—%)
Hy(y)=12(1-4> +3")

The arbitrary initial coefficients Cp and C, in H, are chosen according to a standard
convention. The normalized solutions are then

Y E(X) = W nr1/280(X) = Ya(X)
mo e mox* mo "
=<”nh22"(n!)2) exp (— 7 )Hn[<7> x} (7.3.22)

The derivation of the normalization constant

o 1/4
m
Ap=| ——— 7.3.23
I:nh22"(n!)2} ( )

is rather tedious and will not be discussed here in view of a shortcut to be discussed
in the next section.
The following recursion relations among Hermite polynomials are very useful:

Hi(y)=2nH, , (7.3.24)
H,.\(y)=2yH,—2nH,, (7.3.25)

as is the integral
f H(p)Hi(p) e dy=8,m(n'*2nl) (7.3.26)

[ee}

which is just the orthonormality condition of the eigenfunctions y,(x) and y,(x)
written in terms of y = (ma/#)'*x.
We can now express the propagator as

© mow mo
Uk, t;x,1)=Y A, ——x2>Hn x)A4, ex (——x’2>
(x ) EO exp( oy (x) Pl= 722

X H(x") exp[—i(n+1/2)o(1—1)] (7.3.27)
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Evaluation of this sum is a highly formidable task. We will not attempt it here si
we will find an extremely simple way for calculating U in Chapter 8, devoted to
path integral formalism. The result happens to be

mo )1/2 xp|: imo (xX*+x*) cos @T—2xx’' ] (73,

Ux, t; X', t’)=(—.—.—-— .
2rifisin T h 2sin T
where T=1—7¢"
This concludes the solution of the eigenvalue problem. Before analyzing o
results let us recapitulate our strategy.

Step 1. Introduce dimensionless variables natural to the problem.

Step 2. Extract the asymptotic (y— oo, y—0) behavior of y.

Step 3. Write y as a product of the asymptotic form and an unknown function
The function u will usually be easier to find than y.

Step 4. Try a power series to see if it will yield a recursion relation of the form Eq,
(7.3.15).

Exercise 7.3.1.* Consider the question why we tried a power-series solution for Eq
(7.3.11) but not Eq. (7.3.8). By feeding in a series into the latter, verify that a three-term
recursion relation between C,.,, C,, and C,—, obtains, from which the solution does not
follow so readily. The problem is that y” has two powers of y less than 2y, while the —
piece has two more powers of y. In Eq. (7.3.11) on the other hand, of the three pieces «
—2yu, and (2 — 1)u, the last two have the same powers of .

Exercise 7.3.2. Verify that Hy(y) and H4(y) obey the recursion relation, Eq. (7.3.15).

Exercise 7.3.3. If w(x) is even and ¢ (x) is odd under x——x, show that

f w(x)¢(x) dx=0

o

Use this to show that y,(x) and y(x) are orthogonal. Using the values of Gaussian integrals
in Appendix A.2 verify that w,(x) and wq(x) are orthogonal.

Exercise 7.3.4. Using Eqs. (7.3.23)-(7.3.25), show that

h 1/2
<n’|X|n>=<5;l;)-) [6n’,n+l(n+ l)]/2+6n’,n—lnl/2]

172

mwh) 1[6,,",,+|(n+ 1)1/2—671',’!—1”]/2]

n{P =
| Piny ( 2

Exercise 7.3.5.* Using the symmetry arguments from Exercise 7.3.3 show that <{n|X|n)
(n|PIn>=0 and thus that (X*>=(AX)* and (P*>=(AP)* in these states. Show t
11X 1) =3#%/2me and {1|P?|1>=5meh. Show that y,(x) saturates the uncertainty bo
AX-AP>H/2.



Exercise 7.3.6.% Consider a particle in a potential

V(x)=imao™>, x>0

=00, x<0

What are the boundary conditions on the wave functions now? Find the eigenvalues and
eigenfunctions.

We now discuss the eigenvalues and eigenfunctions of the oscillator. The follow-
ing are the main features:

(1) The energy is quantized. In contrast to the classical oscillator whose energy
is continuous, the quantum oscillator has a discrete set of levels given by Eq. (7.3.20).
Note that the quantization emerges only after we supplement Schrédinger’s equation
with the requirement that y be an element of the physical Hilbert space. In this case
it meant the imposition of the boundary condition y(|x|—00)—0 [as opposed to
w(|x] = 00)— 00, which is what obtained for all but the special values of E].

Why does the classical oscillator seem to have a continuum of energy values?
The answer has to do with the relative sizes of the energy gap and the total energy
of the classical oscillator. Consider, for example, a mass of 2 g, oscillating at a
frequency of 1 rad/sec, with an amplitude of 1 cm. Its energy is

E=3imo*x}=1 erg
Compare this to the gap between allowed energies:

) AE=tio~10""erg
At the macroscopic level, it is practically impossible to distinguish between a system
whose energy is continuous and one whose allowed energy levels are spaced 10 erg
apart. Stated differently, the quantum number associated with this oscillator is

5 n=—l—;——1:1027

while the difference in » between adjacent levels is unity. We have here a special case
of the correspondence principle, which states that as the quantum number tends to
infinity, we regain the classical picture. (We know vaguely that when a system is big,
it may be described classically. The correspondence principle tells us that the quantum
number is a good measure of bigness.)

(2) The levels are spaced uniformly. The fact that the oscillator energy levels
go up in steps of % allows one to construct the following picture. We pretend that
associated with an oscillator of classical frequency @ there exist fictitious particles
called quanta each endowed with energy %w. We view the nfio piece in the energy
formula Eq. (7.3.20) as the energy of » such quanta. In other words, we forget about
the mass and spring and think in terms of the quanta. When the quantum number
n goes up (or down) by An, we say that An quanta have been created (or destroyed).
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Although it seems like a matter of semantics, thinking of the oscillator in terms of
these quanta has proven very useful.

In the case of the crystal, there are 3N, oscillators, labeled by the 3N, values of
(k, 1), with frequencies w(k, A). The quantum state of the crystal is specified by
giving the number of quanta, called phonons, at each (k, 1). For a crystal whos
Hamiltonian is exactly given by a sum of oscillator pieces, the introduction of the
phonon concept is indeed a matter of semantics. If, however, we consider deviations
from this, say to take into account nonleading terms in the Taylor expansion of the
potential, or the interaction between the crystal and some external probe such as an
electron shot at it, the phonon concept proves very useful. (The two effects mentioned
above may be seen as phonon-phonon interactions and phonon-electron inter
actions, respectively.)

Similarly, the interaction of the electromagnetic field with matter may be viewed
as the interaction between light quanta or photons and matter, which is discussed in
Chapter 18.

(3) The lowest possible energy is fie /2 and not 0. Unlike the classical oscillator,
which can be in a state of zero energy (with x =p=0) the quantum oscillator hasa
minimum energy of fim/2. This energy, called the zero-point energy, is a reflection
of the fact that the simultaneous eigenstate |x =0, p=0) is precluded by the canonical
commutation relation [X, P}=i#. This result is common to all oscillators, whether
they describe a mechanical system or a normal mode of the electromagnetic field,
since all these problems are mathematically identical and differ only in what the
coordinate and its conjugate momentum represent. Thus, a crystal has an energy
shw(k, 1) in each mode (k, 1) even when phonons are absent, and the electromag-
netic field has an energy sho(k, A) in each mode of frequency @ even when photons
are absent. (The zero-point fluctuation of the field has measurable consequences,
which will be discussed in Chapter 18.)

In the following discussion let us restrict ourselves to the mechanical oscillator
and examine more closely the zero-point energy. We saw that it is the absence of
the state [x=0, p=0) that is responsible for this energy. Such a state, with AX=
AP=0, is forbidden by the uncertainty principle. Let us therefore try to find a state
that is quantum mechanically allowed and comes as close as possible (in terms of
its energy) to the classical state x=p=0. If we choose a wave function y(x) that is
sharply peaked near x=0 to minimize the mean potential energy GmoX?), the
wave function in P space spreads out and the mean kinetic energy (P>/2m) grows.
The converse happens if we pick a momentum space wave function sharply peaked
near p=0. What we need then is a compromise Wmin(Xx) that minimizes the total
mean energy without violating the uncertainty principle. Let us now begin our quest
for Ymin(x). We start with a normalized trial state |y) and consider

<w|fﬂw>=<H>=<—2’3+1me<X2> 13,
m 2
Now

(APY*= (P2 — (P’ a3
and

(AX Y =X —(X)? (7.3.31



so that

2 2
CHY =——~—(AP)2+ S +% ma[(AX )+ {X)?] (7.3.32)
m

The first obvious step in minimizing (H) is to restrict ourselves to states with (X)=
(P)=0. (Since (X and {P) are independent of each other and of (AX )? and (APY,
such a choice is always possible.) For these states (from which we must pick the
winner)

(APY’

2m

(HY= +% mo*(AX ) (7.3.33)

Now we use the uncertainty relation
AX-AP>H/2 (7.3.34)

where the equality sign holds only for a Gaussian, as will be shown in Section 9.3.
We get

2

+l me*(AX ) (7.3.35)

<H>28m(AX)2 2

We minimize {H) by choosing a Gaussian wave function, for which

2

l 2 2
P—sm(AX)2+ _mo (AX) (7.3.36)

<H>Gaussian =
What we have found is that the mean energy associated with the trial wave function
is sensitive only to the corresponding AX and that, of all functions with the same
AX, the Gaussian has the lowest energy. Finally we choose, from the family of
Gaussians, the one with the AX that minimizes {(H >Gaussian- BY requiring

a<; Z‘;{)z =0= szz;)4+% mao? (7.3.37)
we obtain
(AX)*=H/2mo (7.3.38)
and

(Hymin=Ho/2 (7.3.39)
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Thus, by systematically hunting in Hilbert space, we have found that the follo
normalized function has the lowest mean energy:

" ﬁw
mao mawx
u‘ min{ X exp s li min ;.3.

If we apply the above result

{Wominl H| Win) <yl Hly)  (forall [y))

to |w ) =]|w,) = ground-state vector, we get

(W min| H| Wrin) < (ol Hl o) = Eo (7.34

Now compare this with the result of Exercise 5.2.2:

Ey= o Hlyoy < y|Hly) forallly)

If we set | W) =|wminy we get

Ey= ol Hlwo) < {Wmin| H| Wininy (7.3

It follows from Eq. (7.3.41) and (7.3.42) that

fi
EO = <V/0I HI W0> = <Wmin|H] Wmin> =—2a—) (73

Also, since there was only one state, | wminy, With energy fim /2, it follows

l WO> = [ lI/min> (7

We have thus managed to find the oscillator ground-state energy and state v
without solving the Schrédinger equation.

It would be a serious pedagogical omission if it were not emphasized at
juncture that the uncertainty relation has been unusually successful in the abow
context. Our ability here to obtain all the information about the ground state using
the uncertainty relation is a consequence of the special form of the oscillator Hamil-
tonian [which allowed us to write (H) in terms of (AX)” and (AP)?] and the fact
that its ground-state wave function is a Gaussian (which has a privileged role with
respect to the uncertainty relation). In more typical instances, the use of the uncer-
tainty relation will have to be accompanied by some hand-waving [before {(H) can
be approximated by a function of (AX)? and (AP)?] and then too will yield only an
estimate for the ground-state energy. As for the wave function, we can only get an
estimate for AX, the spread associated with it.



Figure 7.1. Normalized eigenfunctions for n=
0,1,2, and 3. The small arrows at
iYl=(2n+1)"/* stand for the classical turning
points, Recall that y=(maw/#)'’x.

(4) The solutions (Fig. 7.1) yv,(x) contain only even or odd powers of x, depend-
ing on whether n is even or odd. Consequently the eigenfunctions are even or odd:

Va(—x) = Wu(x), neven

=—y,(x), nodd

In Chapter 11 on symmetries it will be shown that the eigenfunctions had to have
this property.

(5) The wave function does not vanish beyond the classical turning points, but
dies out exponentially as x—o00. [Verify that the classical turning points are given
by yo==(2n+1)"/%] Notice, however, that when # is large (Fig. 7.2) the excursions
outside the turning points are small compared to the classical amplitude. This expo-
nentially damped amplitude in the classically forbidden region was previously
encountered in Chapter 5 when we studied tunneling.

(6) The probability distribution P(x) is very different from the classical case.
The position of a given classical oscillator is of course exactly known. But we could
ask the following probabilistic question: if I suddenly walk into a room containing
the oscillator, where am I likely to catch it? If the velocity of the oscillator at a point
x is v(x), the time it spends near the x, and hence the probability of our catching it
there during a random spot check, varies inversely with v(x):

1 1

v(x) - o(x5—x*)'"?

Pe(x)oc (7.3.45)

which is peaked near +x, and has a minimum at the origin. In the quantum case,
for the ground state in particular, |y (x)|* seems to go just the other way (Fig. 7.1).
There is no contradiction here, for quantum mechanics is expected to differ from
classical mechanics. The correspondence principle, however, tells us that for large »
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Jrl\h.(y)l

Figure 7.2. Probability density in the state n=
The broken curve gives the classical probabi
-6 -4 -2 o 2 4 6 distribution in a state with the same energy.

the two must become indistinguishable. From Fig. 7.2, which shows the situation
at n=11, we can see how the classical limit is reached: the quantum distribution
P(x) =|w(x)|* wiggles so rapidly (in a scale set by the classical amplitude) that onls
its mean can be detected at these scales, and this agrees with P (x). We are reminded
here of the double-slit experiment performed with macroscopic particles: there is:
dense interference pattern, whose mean is measured in practice and agrees with the
classical probability curve.

A remark that was made in more general terms in Chapter 6: the classici
oscillator that we often refer to, is a figment lodged in our imagination and doesn'
exist. In other words, all oscillators, including the 2-g mass and spring system, ar
ultimately governed by the laws of quantum mechanics, and thus have discrete
energies, can shoot past the “classical” turning points, and have a zero-point energy
of 3%iw even while they play dead. Note however that what I am calling nonexistent
is an oscillator that actually has the properties attributed to it in classical mechanics,
and not one that seems to have them when examined at the macroscopic level.

Exercise 7.3.7.*% The Oscillator in Momentum Space. By setting up an eigenvalue equation
for the oscillator in the P basis and comparing it to Eq. (7.3.2), show that the momentum
space eigenfunctions may be obtained from the ones in coordinate space through the substitu-
tion x—p, mw—1/mo. Thus, for example,

1/4
vo(p) =( ) e

mrho

There are several other pairs, such as AX and AP in the state |n), which are related by the
substitution mw — 1/me. You may wish to watch out for them. (Refer back to Exercise 7.3.5,

7.4. The Oscillator in the Energy Basis

Let us orient ourselves by recalling how the eigenvalue equation

(P2 1 22) .
—+-mo’X* |Ey=E|E) (74
2m 2



was solved in the coordinate basis: (1) We made the assignments X-—x, 203
P--ifid/dx. (2) We solved_ for the components <).c| E> = yg(x) and the eigenvalues. THE HARMONIC

To solve the problem in the momentum basis, we first compute the X and P OSCILLATOR
operators in this basis, given their form in the coordinate basis. For instance,

PIX|p>= ”<p_|');> <);|X|x)> <X_ ny:> dx dx
e P* x8(x—x' i

G @ven)  Gopa

=—ihé'(p—p’)

We then find P and H(X, P) in this basis. The eigenvalue equation, (7.4.1), will then
become a differential equation that we will proceed to solve.

Now suppose that we want to work in the energy basis. We must first find the
eigenfunctions of H, i.e., {x|E), so that we can carry out the change of basis. But
finding (x| E) = w(x) amounts to solving the full eigenvalue problem in the coordi-
nate basis. Once we have done this, there is not much point in setting up the problem
in the E basis.

But there is a clever way due to Dirac, which allows us to work in the energy
basis without having to know ahead of time the operators X and P in this basis. All
we will need is the commutation relation

: [X, P|=ihI=if (14.2)

&
b4

which follows from X —x, P——if d/dx, but is basis independent. The next few steps
will seem rather mysterious and will not fit into any of the familiar schemes discussed
so far. You must be patient till they begin to pay off.

Let us first introduce the operator

® 1,2 1 1/2
m
a=<—) X+i< ) P (7.4.3)
2% 2moh
and its adjoint
® 172 1 1/2
m
a*=<—) X—i( ) P (7.4.4)
21 2moh

(Note that mw—1/mo as X «> P.) They satisfy the commutation relation (which
you should verify)

[a,a']=1 (7.4.5)
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Note next that the Hermitian operator a'a is simply related to H:
p ply

mo 1
da=— X"+

P>+ [X, P]
2% dmwh 2%

i
Sk
.
__ miiSR e

so that

H=(d'a+1/2)ho (7.4¢

expressing H=P?+X* (ignoring constants) as a product of (X+iP)=a
(X—iP)=a'. The extra fiw /2 in Eq. (7.4.6) comes from the non-commutative na
of X and P.] R

Let us next define an operator H,

T

[This method is often called the “method of factorization” since we
{l
4,

~ A _(dat+1/2) (7.
ho

whose eigenvalues ¢ measure energy in units of . We wish to solve the eigenv
equation for H:

Higy=¢ls) (.
where ¢ is the energy measured in units of fiw. Two relations we will use shortly
la, Hl=[a,a'a+1/2)=[a, d'a]=a (7.

and
[a, ﬁ] =—q (74.
The utility of ¢ and a' stems from the fact that given an eigenstate of H, they gener.

others. Consider
Ha| ey =(aH~[a, H))| &)
(74.1

=(aH—a)l&)
=(g—Dale)



We infer from Eq. (7.4.11) that a| &) is an eigenstate with eigenvalue 6 —1, i.e., 205
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where C, is a constant, and |&— 1> and | &) are normalized eigenkets.I
Similarly we see that

Hd'|sy=(a"H~[d", H]) &>
= (aTIA{+ ahley
=(g+1)aflg> (7413)

so that
a'led=Conle+1) (7.4.14)

One refers to a and a' as lowering and raising operators for obvious reasons. They
are also called destruction and creation operators since they destroy or create quanta
of energy fiw. R

We are thus led to conclude that if ¢ is an eigenvalue of H, so are
g+1l,6+2,6+3,...,+00; and €—1, ..., e—oo. The latter conclusion is in con-
fiict with the result that the eigenvalues of H are nonnegative. So, it must be that
the downward chain breaks at some point: there must be a state | &gy that cannot
be lowered further:

! gl 6> =0 (74.15)

Operating with a', we get

E ‘ aTal gy =0

or
(H—1/2)|&)>=0 [from Eq. (7.4.7)]
or
Hl g0y =1] €0
b c0=1 (7.4.16)

¢ are using the fact that there is no degeneracy in one dimension.
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We may, however, raise the state | &, indefinitely by the repeated application
We thus find that the oscillator has a sequence of levels given by

&=(n+1/2), n=0,1,2,...
or
E,=(n+1/2)ho, n=0,1,2,... (741

Are these the only levels? If there were another family, it too would have to have
ground state { £5) such that

algyy> =0
or
atal g»=0
or
H &by =1]8b) (7.4.li

quently it follows from Eqs. (7.4.16) and (7.4.18) that |&,)> and | &) represent
same state. The same goes for the families built from | &> and | &) by the re
action of a'.

We now calculate the constants C. and C,,, appearing in Egs. (7.4.12l)1!
(7.4.14). Since ¢ =n+1/2, let us label the kets by the integer n. We want to dete
the constant C, appearing in the equation

i
But we know that there is no degeneracy in one dimension (Theorem 15). (;j

ain)=Cyjn—1> (741 ‘
Consider the adjoint of this equation

(nla’=<(n—1|CF (7.4,
By combining these equations we arrive at

(njd’alny={(n—1in—1)>CkC,
(n[ﬁ— 3ln>=C¥C, (since |n—1) is normalized)
(ninjny=|G,>  (since Hiny=(n+1/2)in)) a.
|Gi*=n
C,=(n)""*e® (¢is arbitrary)



It is conventional to choose ¢ as zero. So we have

aln>=n""*n—-1> (7.4.21)

similarly be shown (by you) that
dimy=m+1)"n+1> (7.4.22)

[Note that in Eqgs. (7.4.21) and (7.4.22) the larger of the »’s labeling the two kets
appears under the square root.] By combining these two equations we find

dan>=a"n"n—1>=n"*n"nd>=nlnd (7.4.23)

terms of

N=d'a (7.4.24)
ed the number operator (since it counts the quanta)

H=N+ (7.4.25)

N —

Equations (7.4.21) and (7.4.22) are very important. They allow us to compute
“the matrix elements of all operators in the |n) basis. First consider @ and a'
themselves:
mlalny=n""*n'in—1y=n"%8,,_, (7.4.26)
la’ny=m+ DX |n+1>=n+1)"6y 11 (7.4.27)

To find the matrix elements of X and P, we invert Eqs. (7.4.3) and (7.4.4) to obtain

h 1/2
X=<——) (a+ah) (7.4.28)
2mo
,(mwh)l/z +
P=i 5 (@' —a) (7.4.29)

and then use Eqs. (7.4.26) and (7.4.27). The details are left as an exercise. The two
basic matrices in this energy basis are

n=0n=1n=2 ...
n=0 0 0 0
n=1 |12 0 0
aden=210 22 0 (7.4.30)

0 o 3V
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and its adjoint ‘

0 12 0 o0
0 0 22 9

Both matrices can be constructed either from Eqs. (7.4.26) and (7.4.27) or Eq
(7.4.21) and (7.4.22) combined with our mnemonic involving images of the tran
formed vectors a'|n)> and a|n). We get the matrices representing X and P by turnir
to Egs. (7.4.28) and (7.4.29):

o 1'2 0 0

2l 120 2Y2 ¢
X <_—) 0 22 o 32 (743
0 o0 372 0 :

. -
0o -1 0 0
5 12| 1172 0 —2!72 0
P<—+i<m;) ) 0 22 o =32 (143
0 0 312 0

[ Ny

The Hamiltonian is of course diagonal in its own basis:

0 32 0 0 31‘

Heoh 74,
e 0 572 (

12 0 0 0 |
i

Equation (7.4.22) also allows us to express all normalized eigenvectors |n) in ter!
of the ground state |0): 1
aT aT aT B (aT)n

|n>=ﬁln—l>=m (7:1—),ﬁ]n—2>' - ()"

i
10> (743
The a and a' operators greatly facilitate the calculation of the matrix of elements
other operators between oscillator eigenstates. Consider, for example, (3|.X°[2). ]



the X basis one would have to carry out the following integral:

mo\*( 1 1\ e mox®
wn=("5) () [ ool
SXD=\"0) P 2 RS

al () <Jeen(-257 (7)o

whereas in the |#) basis

32
<3|X3|2>=(2miw) Gla+ay12)y

p, 32
= (2——) Bl(@+d*d +ad'a+ad'd
mo

+d'aa+d'ad’ +a'd'a+ aTaTaT)) 2>

Since a lowers » by one unit and a' raises it by one unit and we want to go up ]y
one umt from n=2to n=3, the only nonzero contribution comes from a'a'a, aa'a’,
and a'aa’. Now

aTaTal2>:21/ZaTaT|1>=21/221/2aT]2>=21/221/231/2,3>
ad'd’|2y =32ad'|3) =324 4y = 317241124173
aTaaT[2> 31/2 Ta[3> 31/2NI3> 31/23|3>

so that

%.

32
<31X3|2>=(5£5) [2(37) +4(3'%) +3(3')]

What if we want not some matrix element of X, but the probability of finding
the particle in [n) at position x? We can of course fall back on Postulate III, which
tells us to find the eigenvectors |x)> of the matrix X [Eq. (7.4.32)] and evaluate the
inner product {x}|n). A more practical way will be developed in the next section.

Consider a remarkable feature of the above solution to the eigenvalue problem
of H. Usually we work in the X basis and set up the eigenvalue problem (as a
differential equation) by invoking Postulate II, which gives the action of X and P in
the X basis (X—x, P——ifi d/dx). In some cases (the linear potential problem), the
P basis recommends itself, and then we use the Fourier-transformed version of
Postulate IT, namely, X —i% d/dp, P—p. In the present case we could not transform
this operator assignment to the energy eigenbasis, for to do so we first had to solve
for the energy eigenfunctions in the X basis, which was begging the question. Instead
we used just the commutation relation [X, P]=i#, which follows from Postulate II,
but is true in all bases, in particular the energy basis. Since we obtained the complete
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solution given just this information, it would appear that the essence of Postula
is just the commutator. This in fact is the case. In other words, we may trade
present Postulate IT for a more general version:

Postulate II. The independent variables x and p of classical mechanics
become Hermitian operators X and P defined by the canonical commutal
{X, P]=i#. Dependent variables w(x,p) are given by operators Q
o(x—X, p—P).

To regain our old version, we go to the X basis. Clearly in its own basis X—;

We must then pick P such that [X, P]=if. If we make the conventional choice P:

—ifi d/dx, we meet this requirement and arrive at Postulate II as stated earlier. |

the present version of Postulate I allows us some latitude in the choice of P,

we can add to —ifi d/dx any function of x without altering the commutator:
assignment

X—x (743

X basis

p— —ﬂ’i — +f(x) (743

X basis

is equally satisfactory. Now, it is not at all obvious that in every problem (and
just the harmonic oscillator) the same physics will obtain if we make this our s
point. For example if we project the eigenvalue equation

Plp>=plp> (74.

onto the X basis, we now get

d
l:_iﬁ d +f(x)}/lp(x) =PWp(x) (74.
X

from which it follows that w,(x) is no longer a plane wave oce” %, How can
physics be the same as before? The answer is that the wave function is never measur
directly. What we do measure are probabilities |(@|w )| for obtaining some resi
o when Q is measured, squares of matrix elements [{y|Q|y,>|? or the eigenvak
spectrum of operators such as the Hamiltonian. In one of the exercises that follow
you will be guided toward the proof that these measurable quantities are in fact le
invariant under the change to the nontraditional operator assignment Eq. (7.4. 3&
Dirac emphasized the close connection between the commutation rule

(X, Pl=if

of the quantum operators and the Poisson brackets (PB) of their clas
counterparts

{x,p}=1



which allows us to write the defining relation of the quantum operators as
X, Pl=it{x, p} =ik (7.4.38)

The virtue of this viewpoint is that its generalization to the “quantization” of
a system of N degrees of freedom is apparent:

Postulate II ( For N Degrees of Freedom). The Cartesian coordinates x1, ..., Xy
and momenta pi, . ., pw of the classical description of a system with N degrees
of freedom now become Hermitian operators X1, .., Xn; Pi,..., Py obeying
the commutation rules

[Xi, Pj]= iﬁ{x,—,pj} = lﬁ5y
[X., X,]=if{x, x} =0 (7.4.39)
[P:, Py)=ifi{pi, p;} =0

Similarly w(x, p)—o(x—>X, p—P)=Q.

[We restrict ourselves to Cartesian coordinates to avoid certain subtleties associated
with the quantization of non-Cartesian but canonical coordinates; see Exercise
(7.4.10). Once the differential equations are obtained, we may abandon Cartesian
coordinates in looking for the solutions.]

It is evident that the generalization provided towards the end of Section 4.2,
namely,

Xi > X
X basis

p—— i

X basis ax i

is a choice but not the choice satisfying the canonical commutation rules, Eq. (7.4.39),
for the same reason as in the N=1 case.

Given the commutation relations between X and P, the ones among dependent
operators follow from the repeated use of the relations

[Q, AT ]=A[Q, T]+{Q, AT
and
[QA, T]=Q[A, T]+[Q,TIA

Since PB obey similar rules (Exercise 2.7.1) except for the lack of emphasis on
ordering of the classical variables, it turns out that if

{w(x, p), A(x,p)} =7(x,p)
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then

[Q(X, P), A(X, P)]=ifiT(X, P) (144

except for differences arising from ordering ambiguities; hence the formal simila
between classical and quantum mechanics, first encountered in Chapter 6.

Although the new form of postulate II provides a general, basis-independ
specification of the quantum operators corresponding to classical variables, that
to say for “quantizing,” in practice one typically works in the X basis and
ignores the latitude in the choice of P; and sticks to the traditional one, P
~ifi 0/0x;, which leads to the simplest differential equations. The solution to
oscillator problem, given just the commutation relations (and a little help fr
Dirac) is atypical.

Exercise 7.4.1.* Compute the matrix elements of X and P in the |#) basis and comy
with the result from Exercise 7.3.4.

Exercise 7.4.2.% Find (XD, (P), {X*, {(P?>, AX - AP in the state |n).

Exercise 7.4.3.* (Virial Theorem). The virial theorem in classical mechanics states
for a particle bound by a potential ¥(r) =ar*, the average (over the orbit) kinetic and po
energies are related by

T=c(k)V

when ¢(k) depends only on k. Show that c(k) =% /2 by considering a circular orbit. Usin,
results from the previous exercise show that for the oscillator (k=2)

T>=LKV>
in the quantum state |n).
Exercise 7.4.4. Show that (n|.X*|n>=(#/2mw)*[3+ 6n(n+1)].

Exercise 7.4.5.* At t=0 a particle starts out in |w(0)>=1/2'/2(|0>+|1>). (1) Fi

Iw(2); (2) find <X(0)) =y (0)1X] w(0)), CP(0)), <X(1)), {P(1)>; (3) find {X(2)) and (F(),
using Ehrenfest’s theorem and solve for (X(#)) and {P(¢)) and compare with part (2).

Exercise 7.4.6.* Show that (a()>=e "' (a(0)) and that {(a'(r)> =€“"¢a’(0)).
Exercise 7.4.7. Verify Eq. (7.4.40) for the case

(HQ=X, A=X*+P?
(2) Q=X A=P?

The second case illustrates the ordering ambiguity.
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l,=zp—Xp:
I.= xpy = yp=
(1) Construct Ly, L,, and L., the guantum counterparts, and note that there are no ordering
ambiguities.

(2) Verify that {l, ]} =1 [see Eq. (2.7.3) for the definition of the PB].
(3) Verify that [L., L,]= ihL..

Exercise 7.4.9 (Important). Consider the unconventional (but fully acceptable) operator
choice

X—x

P——ih i+f(x)
dx

in the X basis.

(1) Verify that the canonical commutation relation is satisfied.
(2) It is possible to interpret the change in the operator assignment as a result of a unitary
change of the X basis:

|6y 1) =" ) == |x)

where
glx)= j flx'ydx

First verify that

X%y =x6(x—X)

X x

new X basis

Next verify that

i ()2|P|)2’>=[—ihi+f(x)] S(x—x)
dx
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ie.,

d
P——— —ifi—+f(x)
new X basis dx

This exercise teaches us that the “X basis™ is not unique; given a basis | x), we can get ano
| %>, by multiplying by a phase factor which changes neither the norm nor the orthogonali
The matrix elements of P change with f, the standard choice corresponding to f=0. Since
presence of f is related to a change of basis, the invariance of the physics under a change
f (from zero to nonzero) follows. What is novel here is that we are changing from one X b:
to another X basis rather than to some other Q basis. Another lesson to remember is
two different differential operators w(x, —i#i d/dx) and @(x, —i% d/dx+f) can have the
ecigenvalues and a one-to-one correspondence between their eigenfunctions, since they
represent the same abstract operator Q(X, P).

Exercise 7.4.10.* Recall that we always quantize a system by promoting the Cartesi
coordinates xy, ..., xy; and momenta p,, . . ., py to operators obeying the canonical co
tation rules. If non-Cartesian coordinates seem more natural in some cases, such as
eigenvalue problem of a Hamiltonian with spherical symmetry, we first set up the differenti
equation in Cartesian coordinates and then change to spherical coordinates (Section 4.2).
Section 4.2 it was pointed out that if # is written in terms of non-Cartesian but canonical
coordinates ¢;...¢qy; pi1-..pn; H(q:—q:, pi—~—ih 0/0q;) does not generate the correct
Hamiltonian H, even though the operator assignment satisfies the canonical commutation
rules. In this section we revisit this problem in order to explain some of the subtleties arising
in the direct quantization of non-Cartesian coordinates without the use of Cartesian coordi-
nates in intermediate stages.

(1) Consider a particle in two dimensions with
2 2
e+
W=17 py+a(x2+y2)l/2
2m

which leads to

—h2<52 52>
Ho | L b T p a2+ 02
o \a gy ) T

in the coordinate basis. Since the problem has rotational symmetry we use polar coordinates
p=(+y)"2,  $=tan”'(y/x)

in terms of which

_h2 52 52
R W NN AT aad
coerdinate 2m \0p~  p dp p~ ¢

Since p and ¢ are not mixed up as x and y are [in the (x> +3*)"/> term] the polar version can
be more readily solved.
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XPx T YPy
—e p=—ti ot
Ppr=¢€o"P (x2+y2)]/2

(where e, is the unit vector in the radial direction), and

Po=XPy~ YPx (the angular momenturm, also called 1)

2 2
Po . Do . .
="+ —"—+a verify this
. 2mpt p ( y )

and directly promote all classical variables p, p,, ¢, and p, to quantum operators obeying
onical commutations rules? Let’s do it and see what happens. If we choose operators

P —»—iﬁ—a—
op

G
P¢—>"iﬁ -
o

that obey the commutation rules, we end up with

i

_h2(52+l 52>+ (7.4.42)
’[__’—q) —_— _ _—— a B )
‘ coerdinate 2m \op* p° 0¢’° p

as1s

his in itself is not serious, for as seen in the last
1 two different equations. In the present case this
Egs. (7.4.41) and (7.4.42) do not have the same
t one, since the quantization procedure in

which disagrees with Eq. (7.4.41). Now t
exercise the same physics may be hidden i
isn’t true;: as we will see, the Hamiltonians in

eigenvalues.} We know Eq. (7.4.41) is the correc
terms of Cartesian coordinates has empirical support. What do we do now?
(2) A way out is suggested by the fact that although the choice P,——ifi d/0p leads to

the correct commutation rule, it is not Hermitian! Verify that
o 2r 5 Wz
<W11Pp|w2>=j j Wf("iﬁ—-)pdpdq&
o Yo op

o 2n 5W *
#j j (—m—‘) w2p dp dd
o Jo ap

=P,y vz

(You may assume pwiy,—0 as p—0 or co. The problem comes from the fact that p dp dé
P

and not dp d¢ is the measure for integration.)

{ What we will see is that Pp= —i# d/dp, and hence the H constructed with it, are non-Hermitian.
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Show, however, that

Pp—>—iﬁ<i+—l-> (74
op 2p
is indeed Hermitian and also satisfies the canonical commutation rule. The angular momentum
Py——ih 8/0¢ is Hermitian, as it stands, on single-valued functions: y(p, ¢)=w(p, ¢+21).
(3) In the Cartesian case we saw that adding an arbitrary f(x) to —i% ¢/dx didn’t have
any physical effect, whereas here the addition of a function of p to ~i# ¢/dp seems important,
Why? [Is f(x) completely arbitrary? Mustn’t it be real? Why? Is the same true for the —i#/
piece?]
(4) Feed in the new momentum operator P, and show that

-w{#* 198 1 1 &
s 2 \op* p3p ap g og)
cogrdinate p° pop 4p° p 09

which still disagrees with Eq. (7.4.41). We have satisfied the commutation rules, chosen Hermi
tian operators, and yet do not get the right quantum Hamiltonian. The key to the myste

lies in the fact that # doesn’t determine H uniquely since terms of order # (or higher) maj
be present in H but absent in s, While this ambiguity is present even in the Cartesian ¢
it is resolved by symmetrization in all interesting cases. With non-Cartesian coordinates
ambiguity is more severe. There are ways of constructing H given 5 (the path inte
formulation suggests one) such that the substitution P,——if(8/0p+1/2p) leads to

(7.4.41). In the present case the quantum Hamiltonian corresponding to

2 2
f:&_kﬁk_',ap

2m  2mp?
is given by
L2 1 . 0 w
H——— # | pop,py—=—ih| —+— |; ¢, pp——ifi— |— 5 (74.
cooggilgale 5[) 2p 0 ¢ 8mp

Notice that the additional term is indeed of nonzero order in #.

We will not get into a discussion of these prescriptions for generating
since they finally reproduce results more readily available in the approach we
adopting.

7.5. Passage from the Energy Basis to the X Basis

It was remarked in the last section that although the |n) basis was ideally suit
for evaluating the matrix elements of operators between oscillator eigenstates, the
amplitude for finding the particle in a state |n) at the point x could not be readily
computed: it seemed as if one had to find the eigenkets |x) of the operators X [Eq.
(7.4.32)] and then take the inner product {x|n). But there is a more direct way to

get ya(x)=<{x|n). ‘



In

s
the X basis:

We start by projecting the equation defining the ground state of the oscillator

al0>=0 (7.5.1)

10> —{x]0) = wo(x)

1/2 1/2
me ) 1
a=|\—— X+i P
2k 2moh

172 12
_><’ﬂ) x+<—_ﬁ ) 4 (7.5.2)
24 2mw dx
terms of y=(ma/#)"’x,
1 d

For later use we also note that (since d/dy is anti-Hermitian),

In

1 d
mzﬁ< _6_1;) (7.5.4)

the X basis Eq. (7.5.1) then becomes

(y+§) wo(y)=0 (7.5.5)
y

ayo(y)_ _
wo(y)

-2/2

wo(y)=Aoe

mox*
Wo(x) = Ao exp (‘ o
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or (upon normalizing)
mo\"* mox
={— - 15.
( nh ) exp( 27 ) (

By projecting the equation

3 (aT)n
_(n!)l/Z

n> 105

ol

onto the X basis, we get the normalized eigenfunctions

i\ 1T a\ mw)”“ )
<"‘">‘“’"["“<%) 47[7(3})} () e as

A comparison of the above result with Eq. (7.3.22) shows that

H(y)=e""? (y —%) e (15.

We now conclude our rather lengthy discussion of the oscillator. If you understa
this chapter thoroughly, you should have a good grasp of how quantum mechanics
works.

Exercise 7.5.1. Project Eq. (7.5.1) on the P basis and obtain yo(p).

Exercise 7.5.2. Project the relation

alnd=n""*n-1>
on the X basis and derive the recursion relation
H,(yy=2nH, ()

using Eq. (7.3.22).

Exercise 7.5.3. Starting with

’r=21/2

ata y

and

(@+a)md>=n"In—1D+@+1)"n+1>




.
and Eq. (7.3.22), derive the relation 219

- THE HARMONIC
l H, . (y)=2yH,(y)—2nH, (y) OSCILLATOR

Exercise 7.5.4.% Thermodynamics of Oscillators. The Boltzman formula
P(iy=eP*0/Z
where
Z= Z e—BE O
gives the probability of finding a system in a state / with energy E(i), when it is in thermal
equilibrium with a reservoir of absolute temperature 7=1/8k, k=1.4x 107'® ergs/° K; being
Boltzman’s constant. (The “probability” referred to above is in relation to a classical ensemble

of similar systems and has nothing to do with quantum mechanics.)

(1) Show that the thermal average of the system’s energy is
E=Y E(i)P(i)———a InZ
7 op

(2) Letthe system be a classical oscillator. The index i is now continuous and corresponds
to the variables x and p describing the state of the oscillator, i.e.,

i-x,p
and
}:—»dex dp
and
, P2 1 2.2
E(i)y->E(x,p)=—+-mox
2m 2
Show that

Zc[=< o )1/2(@>1/2:£
pmae’ B wp

and that

ENote that E, is independent of # and w.
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(3) For the quantum oscillator the quantum number n plays the role of the index i. Show
that

Zu=e PPl (1 —e ey

and

- 1 1
Equzﬁw(i-*-epﬁw—l)

(4) It is intuitively clear that as the temperature T increases (and = 1/kT decreases)
oscillator will get more and more excited and eventually (from the correspondence principle

Verify that this is indeed true and show that “large T means T> fiw/k.

(5) Consider a crystal with N, atoms, which, for small oscillations, is equivalent to 3N,
decoupled oscillators. The mean thermal energy of the crystal Eysa is Eq or Eg, summed
over all the normal modes. Show that if the oscillators are treated classicaly, the specific heat
per atom is

l EE stal
Co(T)=— OEerysan _

3k
N() oT

- PwegiaR

which is independent of T and the parameters of the oscillators and hence the same for
crystals. This agrees with experiment at high temperatures but not as T—0. Empirically,

C(T)-3k (Tlarge)
-0 (T-0)

Following Einstein, treat the oscillators quantum mechanically, asuming for simplicity ¢
they all have the same frequency w. Show that

05/T

05 : 4
cani],

eQE/T_ 1)2

where 8,=#w/k is called the Einstein temperature and varies from crystal to crystal. Sh
that

CQu(T) — 3k

T>»0f

T« 0p

2
05) o
Co(T) — 3k | £ &/T
wr— (%]

Although C  (T)-»0 as T—0, the exponential falloff disagrees with the observ
C(T) = 7-o T? behavior. This discrepancy arises from assuming that the frequencies of

1 More precisely, for crystals whose atoms behave as point particles with no internal degrees of freedo
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Figure 7.3. Comparison of experiment with Einstein’s L
theory for the specific heat in the case of diamond. (f¢ is L
chosen to be 1320 K.) 0 "0z 04 o6 08 10

T/8g

normal modes are equal, which is of course not generally true. [Recall that in the case of two
coupled masses we get o= (k/m)""* and on=(3k/m)" 2] This discrepancy was eliminated
by Debye.

But Einstein’s simple picture by itself is remarkably successful (see Fig. 7.3).



The Path Integral Formulation
of Quantum Theory

We consider here an alternate formulation of quantum mechanics invented by
Feynman in the forties.} In contrast to the Schrodinger formulation, which stems
from Hamiltonian mechanics, the Feynman formulation is tied to the Lagrangian
formulation of mechanics. Although we are committed to the former approach, we
discuss in this chapter Feynman’s alternative, not only because of its aesthetic value,
but also because it can, in a class of problems, give the full propagator with tremend-
ous ease and also give valuable insight into the relation between classical and
! quantum mechanics.

: 8.1. The Path Integral Recipe

; We have already seen that the quantum problem is fully solved once the propa-
tor is known. Thus far our practice has been to first find the eigenvalues and
> eigenfunctions of H, and then express the propagator U(?) in terms of these. In the
path integral approach one computes U(#) directly. For a single particle in one
dimension, the procedure is the following.
To find U(x, t; x', t'):

* (1) Draw all paths in the x-¢ plane connecting (x’, t') and (x, t) (see Fig. 8.1).
(2) Find the action S[x(#)] for each path x(z).
G) Ux, t;x,1)=4 Y SHOVA (8.1.1)

all paths

where A4 is an overall normalization factor.

1 The nineteen forties that is, and in his twenties. An interesting account of how he was influenced by
Dirac’s work in the same direction may be found in his Nobel lectures. See, Nobel Lectures—Physics,
i Vol. IIl, Elsevier Publication, New York (1972).
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(x't" Figure 8.1. Some of the paths that contribute to the propagator.
i T contribution from the path x(¢) is Z=exp{iS[x(s)]/#}.

8.2. Analysis of the Recipe

Let us analyze the above recipe, postponing for a while the proof that it repr
duces conventional quantum mechanics. The most surprising thing about it is t
fact that every path, including the classical path, x (#), gets the same weight, that
is to say, a number of unit modulus. How are we going to regain classical mechanics
in the appropriate limit if the classical path does not seem favored in any way?

To understand this we must perform the sum in Eq. (8.1.1). Now, the correct
way to sum over all the paths, that is to say, path integration, is quite complicated
and we will discuss it later. For the present let us take the heuristic approach. Let
us first pretend that the continuum of paths linking the end points is actually a
discrete set. A few paths in the set are shown in Fig. 8.1.

We have to add the contributions Z, =e“ V% from each path x,(¢). This
summation is done schematically in Fig. 8.2. Since each path has a different action,
it contributes with a different phase, and the contributions from the paths essentially
cancel each other, until we come near the classical path. Since S is stationary here,
the Z’s add constructively and produce a large sum. As we move away from x; (1),
destructive interference sets in once again. It is clear from the figure that U(1) is
dominated by the paths near xq (¢). Thus the classical path is important, not because
it contributes a lot by itself, but because in its vicinity the paths contribute coherently.

How far must we deviate from x before destructive interference sets in? One
may say crudely that coherence is lost once the phase differs from the stationary
value S[x.(?)]/fi=Sa/f by about n. This in turn means that the action for the
soherence paths must be within 7z of S;. For a macroscopic particle this means a
very tight constraint on its path, since Sy is typically ~1 ergsec~10""#, while for
an electron there is quite a bit of latitude. Consider the following example. A free
particle leaves the origin at =0 and arrives at x=1 cm at =1 second. The classical
path is

x=t (8.2.1)

Figure 8.2. Schematic representation of the sum
Paths near x, (1) contribute coherently since S is stati
28 ary there, while others cancel each other out and
be ignored in the first approximation when we calc

| ReU U().




(1,1)

Figure 8.3. Two possible paths connecting (0, 0) and (1, 1). The
action on the classical path x=t is m/2, while on the other, it is
2m/3.

hd J

Consider another path
x=t (8.2.2)

which also links the two space-time points (Fig. 8.3.)

For a classical particle, of mass, say 1g, the action changes by roughly
1.6x 10°%, and the phase by roughly 1.6 x 10*° rad as we move from the classical
path x=1 to the nonclassical path x= . We may therefore completely ignore the
nonclassical path. On the other hand, for an electron whose mass is = 1077 g, 6S~
%/6 and the phase change is just around a sixth of a radian, which is well within the
coherence range 8S/f <. It is in such cases that assuming that the particle moves
along a well-defined trajectory, xu (1), leads to conflict with experiment.

8.3. An Approximation to U(¢) for a Free Particle

Our previous discussions have indicated that, to an excellent approximation, we
may ignore all but the classical path and its neighbors in calculating U(). Assuming
that each of these paths contributes the same amount exp(iSa/#), since S is station-

 ary, we get

Ut)y=4' 5" (8.3.1)

where A’ is some normalizing factor which “measures” the number of paths in the
coherent range. Let us find U(¢) for a free particle in this approximation and compare
K the result with the exact result, Eq. (5.1.10).

The classical path for a free particle is just a straight line in the x—¢ plane:

’

X (1) =X +x7——tx, ("= 1) (8.3.2)

corresponding to motion with uniform velocity v=(x—x)/(t—1). Since L=
mv?/2 is a constant,

t 1 _on2
Sd:J gd;”:-mu
v 2 t—t
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so that l

im(x = x') x')z] (8.33)

Ulx, t; x',1')y=A4"ex
( ) p{ 2t —1)
To find 4’, we use the fact that as —¢ tends to 0, U must tend to (x—x.
Comparing Eq. (8.3.3) to the representation of the delta function encountered in
Section 1.10 (see footnote on page 61),

\

A0 A?

S I C(x—x)?
o(x x)~hm——(ﬂA2)1/2exp[ ]

(valid even if A is imaginary) we get

1/2
el
2rhi(t—1)

so that

172 R 2

m im(x—x")
Ulx,t; x,0)=U(x, t; x)= —_— 8.34
(x, £, )= Ut 13 %) (2;:75:':) eXp[ 2t ] (834

which is the exact answer! We have managed to get the exact answer by just compul
ing the classical action! However, we will see in Section 8.6 that only for potenti
of the form V=a+bx+cx*+dx+exx is it true that U(f) = A(¢) ¢*”. Furthermore,
we can’t generally find A(¢) using U(x, 0; x')=06(x—x") since 4 can contain an
arbitrary dimensionless function f such that f—1 as t—0. Here f= | because we can’
construct a nontrivial dimensionless f using just m, #, and ¢ (check this).

8.4. Path Integral Evaluation of the Free-Particle Propagator

Although our heuristic analysis yielded the exact free-particle propagator,
will now repeat the calculation without any approximation to illustrate p
integration.

Consider U(xy, tn; xo, to). The peculiar labeling of the end points will be j
ified later. Our problem is to perform the path integral

J eSEOVEGI ()] (84.
where

J ZE0)

X0



&. x{tg) x(t)} x(t2} x(t;) x(ty)

Figure 8.4. The discrete approximation to a path |

x(f). Each path is specified by N—1 numbers X

xti), ..., X(ty-1). To sum over paths we must

integrate each X; from —oo to +cc. Once all inte-

grations are done, we can take the limit N—co. to 4tz eeee th ot

is a symbolic way of saying “integrate over all paths connecting xo and x (in the
interval f, and ty).” Now, a path x(¢) is fully specified by an infinity of numbers
x(to)y - . ., x(1), . .., x(ty), namely, the values of the function x(r) at every point ¢
in the interval ¢, to zy. To sum over all paths we must integrate over ali possible
values of these infinite variables, except of course x(2) and x(#y), which will be kept
fixed at xp and xy, respectively. To tackle this problem, we follow the idea that was
used in Section 1.10: we trade the function x(¢) for a discrete approximation which
agrees with x(¢) at the N+1 points t,=t,+ne, n=0,..., N, where ¢=(ty—1t,)/N.
In this approximation each path is specified by N+ 1 numbers x(to), x(41), . . ., x(tx).
The gaps in the discrete function are interpolated by straight lines. One such path
is shown in Fig. 8.4. We hope that if we take the limit N— oo at the end we will get
a result that is insensitive to these approximations.} Now that the paths have been
discretized, we must also do the same to the action integral. We replace the continu-
ous path definition

N tNl
S=J Z(1) dt=J mez dt

fo 1

&

by
N Um (X0 — X :
S=Y E(—'—-’) £ (8.4.2)
where x;= x(t;). We wish to calculate

Ulxw, tn; Xo, 1o) = J N exp{iS[x(D)]/ 7} 2[x(1)]

X0

o0 fo's3 o0 . N—1 ) _ '2
—tma [ [T [ el iy ]
N0 _ fl2,-:0 &

£—0 —oo V- £

xdxi- - dxy_y (8.4.3)

{ We expect that the abrupt changes in velocity at the points #,+n¢ that arise due to our approximation
will not matter because % does not depend on the acceleration or higher derivatives.
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228 It is implicit in the above that x, and xy have the values we have chosen at the
CHAPTER 8 outset. The factor 4 in the front is to be chosen at the end such that we get the
correct scale for U when the limit N— oo is taken.
Let us first switch to the variables

We then want

o0 =] 0 N-—1 ) Y
lim A/J‘ J e J‘ exp{— M]dyl. codyn-,  (8.44)
_ _ i

N-oo P
— o0 0 0 i=0

where

(N-1)/2

2%

w2
m

Although the multiple integral looks formidable, it is not. Let us begin by doing the
y1 integration. Considering just the part of the integrand that involves y,, we get

in

1/2
) e-(yz‘Yo)z/Zi (8.4,
2

J eXP{—; [(y2= )"+ (1~ o) ]}dyl =<

o0

Consider next the integration over y,. Bringing in the part of the integrand involvid
y» and combining it with the result above we compute next

L \1/2 pyp
(%) f e—(ys—yz)z/i,e.—(yryo)z/Zidy2

o0

. 1/2 2 a1/2
- (ﬂ @A [<T) o2y
2 3

. 12
2[(”37)2} o0 y0/3i (8.4,

By comparing this result to the one from the y, integration, we deduce the patte
if we carry out this process N—1 times so as to evaluate the integral in Eq. (8.4.4
it will become

NN —1)2
(i) o~ ON ~I0YNi
Nl/2



NV 12
(lﬂ) e—m(xN — x0)2/2keNi

N2

g

Bringing in the factor 4(2%ie/m)™¥ D/

N7 1/2 .
U:A<2ﬂhgl> ( m ) Cxp{lm(XN_xo)zil
m 2nhiNe 2#iN¢

If we now let N> oo, €-0, Ne—ty—1ty, we get the right answer provided

from up front, we get

g

—N/2

poi

A=[2ﬂ 8‘] g (8.4.7)
m

L

It is conventional to associate a factor 1/B with each of the N—1 integrations and
the remaining factor 1/B with the overall process. In other words, we have just learnt
that the precise meaning of the statement “integrate over all paths” is

BN O
t J@[X(’)]_EEBJ JJ J B B B

—a0 — o0

where

Ny
i B=(2 ”h£‘> (8.4.8)
A m

8.5. Equivalence to the Schridinger Equation

The relation between the Schrédinger and Feynman formalisms is quite similar
to that between the Newtonian and the least action formalisms of mechanics, in that
the former approach is local in time and deals with time evolution over infinitesimal
periods while the latter is global and deals directly with propagation over finite times.

In the Schrodinger formalism, the change in the state vector |y ) over an infin-
itesimal time ¢ is

i |w(e)>—|w(0)>:‘7i£ HIy(0)) 85.1)

o
which becomes in the X basis

s _h2 62
w(x, &) — w(x, 0) =7‘£ {E At 0)} w(x, 0) (8.5.2)
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to first order in €. To compare this result with the path integral prediction to the
same order in &, we begin with

v(x, €) =J U(x, &; x"Yyp(x', 0) dx’' (8.5.3)

The calculation of U(¢) is simplified by the fact that there is no need to do any
integrations over intermediate x’s since there is just one slice of time £ between the
start and finish. So i

m 2 m(x—x') x+x' i
U(x,s;x)=(2ﬂhi8> exp{l[ . —SV( 5 ,0>:|/ﬁ} (8.54)

where the (m/2n#ig)'/? factor up front is just the 1/B factor from Eq. (8.4.8). We
take the time argument of ¥ to be zero since there is ailready a factor of & before it
and any variation of ¥ with time in the interval 0 to ¢ will produce an effect of

second order in &. So i
m \" [ m(x—x')’ ie (x+x
Ve )(57> f ""p[’“—zsﬁ }”‘p[“% V( 2 "ﬂ
X y(x',0)dx' (8.5.5)

Consider the factor exp[im(x — x')>/2¢#]. It oscillates very rapidly as (x —x’) varies
since ¢ is infinitesimal and 7 is so smail. When such a rapidly oscillating function
multiplies a smooth function like w(x', 0), the integral vanishes for the most part
due to the random phase of the exponential. Just as in the case of the path integration,
the only substantial contribution comes from the region where the phase is stationary.
In this case the only stationary point is x=x’, where the phase has the minimum
value of zero. In terms of n=x'— x, the region of coherence is, as before,

2
mun
—X7

2¢h

or

2ehm 12
Inl <
m

Consider now

m 172 © ' , |: i n
y(x, &)= (2ﬂhi£> J‘w exp(imn”/2he)-exp| — (ﬁ)sV(x+5, 0)]

Xy(x+n,0)dn (8.5




We will work to first order in ¢ and therefore to second order in 7 [see Eq.

above]. We expand

191/1+
ox*

RENRS i

=1—5;V(x,0)+---

%
vix+n,0)=y(x,0)+n-—
ox

since terms of order ne are to be neglected. Equation (8.5.7) now becomes

172 rp . 2 .
_ m mn ~E
‘l/(x, 8) - <2ﬂhl£> f exp( 2h8 >|:|[/(X, 0) 5 V(xa 0) ‘I/(X, 0)

oy 1’ 021//}
+p—r+L g
n@x 2 ot 1

Consulting the list of Gaussian integrals in Appendix A.2, we get

1/2 L \1/2 L A1/2 o
m 2rhie fie (2mhie\’ Oy
, €)= ,0 -— ) —
vix € (2ﬂﬁi8) [w(x )( m ) 2im( m ) x>

. . \1/72
_1_;(271/’118) Vi 0) i, 0):|

m

or ;

_ 2 02
y(x, &)= y(x, 0)*7?[7 pRER Vix, 0)] w(x, 0)

which agrees with the Schrodinger prediction, Eq. (8.5.1).

8.6. Potentials of the Form V= a+ bx + cx* + dx + exxi

We wish to compute
x
UG, 15 x') = f SOV GLx(1)]
v

1 This section may be omitted without loss of continuity.
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Let us write every path as
X(£") = xa (1) + y(1") (86
It follows that
(") = Fa () +3() (84

Since all the paths agree at the end points, y(0) = y(¢) =0. When we slice up the ti
into N parts, we have for intermediate integration variables

X =x(t))=xq(t]) +y(t)=xa () +y;

Since x4 (t/) is just some constant at ¢/,

dx,»=dy,»
and
x 0
f 2Ix(1")]= f 21y} @.
x 0
so that Eq. (8.6.1) becomes
Ulx, t; x7) =f exp {% Slxa (1) +y(t”)]}9[y(t")] @

The next step is to expand the functional S in a Taylor series about x: 1
t
S[Xcl +y] = J .,?(xd +y, Xcl +y) dl”
0
! 0%
= J l:g(xcl s xcl) + (_
0 Ox

1 (azg
+ —
2\ 8x?

L2
SO ox

5
yzﬂ dr’ @8
Xcl

The series terminates here since % is a quadratic polynominal.

The first piece £ (xa, X.1) integrates to give S[xy]=S.. The second piece, lin
in y and y, vanishes due to the classical equation of motion. In the last piece, if
recall

2
2, O

- 4
xa Ox 0% »

=2
Xel ax

FL=imi*—a—bx—cx’—di—exx (8.6.



18*%
- =— 8.6.8
2 ox* ¢ ( )
PY

=—¢ (8.6.9)
Ox 0X
| &y
- = 8.6.10
20w (8.6.10)

Consequently Eq. (8.6.5) becomes

'Sl 0 i ! 1
U(x,t;x’)=exp(l °)J exp[—f (— myz—cyz—eyy> dt”}
= i)l TPE) 2
' x P[y(t")] (8.6.11)

Since the path integral has no memory of x, it can only depend on ¢. So

U(x, t; x')= €% 4(t) (8.6.12)

where A(¢) is some unknown function of ¢. Now if we were doing the free-particle
problem, we would get Eq. (8.6.11) with ¢=¢e=0. In this case we know that [see
Eq. (8.3.4)]

1/2
m
* A(1) —(:mhiz) (8.6.13)

Since the coefficient & does not figure in Eq. (8.6.11), it follows that the same value
of A(?) corresponds to the linear potential V'=a+bx as well. For the harmonic
oscillator, c=3mw>, and we have to do the integral

A(t) = f exp[i/ﬁj %m( yz—a)zyz)] dr'a[ (1] (8.6.14)

The evaluation of this integral is discussed in the book by Feynman and Hibbs
referred to at the end of this section. Note that even if the factor A(¢) in y(x, t) is
not known, we can extract all the probabilistic information at time ¢.

Notice the ease with which the Feynman formalism yields the full propagator
in these cases. Consider in particular the horrendous alternative of finding the eigen-
functions of the Hamiltonian and constructing from them the harmonic oscillator
propagator.,

The path integral method may be extended to three dimensions without any
major qualitative differences. In particular, the form of U in Eq. (8.6.12) is valid
for potentials that are at most quadratic in the coordinates and the velocities. An
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interesting problem in this class is that of a particle in a uniform magnetic field. Fe
further details on the subject of path integral quantum mechanics, see R. P. Feynma
and A. R. Hibbs, Path Integrals and Quantum Mechanics, McGraw-Hill (1965), an
Chapter 21.

Exercise 8.6.1.* Verify that

1/2
U(x, t; X', 0) = A(t) exp(iSu/ ), A(t) = (ﬁ)

agrees with the exact result, Eq. (5.4.31), for V(x)=—fx. Hint: Start with x,(t"):
Xo+ vot” + %( f/m)t"* and find the constants x, and vp from the requirement that x, (0)=1
and x4 (£) =x.

Exercise 8.6.2. Show that for the harmonic oscillator with

U(x,t;)d)=A(t)exp{ ma t[(x2+x’2)cos wt—2xx’]}

2% sin @
where A4(¢) is an unknown function. (Recall Exercise 2.8.7.)

Exercise 8.6.3. We know that given the eigenfunctions and the eigenvalues we can
struct the propagator:

Ulx, t; X, £) =Y, ya(x)y) (x) e 00" (8.6.15]
|

Consider the reverse process (since the path integral approach gives U directly), for the mé
of the oscillator. ;
g

®

(1) Set x=x"=¢=0. Assume that A(f)=(mw/2nifisin wt)'’> for the oscillator. By

expanding both sides of Eq. (8.6.15), you should find that E=fiw/2, 5Shw/2, %%w/2,. ..,
What happened to the levels in between?

(2) (Optional). Now consider the extraction of the eigenfunctions. Let x=x' and /=

Find Eo, E\, |wo(x)|*, and |y,(x)|* by expanding in powers of & =exp(iwt).

Exercise 8.6.4.* Recall the derivation of the Schrédinger equation (8.5.8) starting from
Eq. (8.5.4). Note that although we chose the argument of ¥ to be the midpoint x +x//2, it
did not matter very much: any choice x+an, (where 1=x"—x) for 0<a <1 would have
given the same result since the difference between the choices is of order ne~g*> All this
was thanks to the factor & multiplying ¥ in Eq. (8.5.4) and the fact that |n|~¢'?, as par
Eq. (8.6.5).



Consider now the case of a vector potential which will bring in a factor

exp[lg—: ZC;—XA(x+an):|Eexp|i—%; gA(x+ ar;)il

to the propagator for one time slice. (We should really be using vectors for position and the
vector potential, but the one-dimensional version will suffice for making the point here.) Note
that ¢ now gets canceled, in contrast to the scalar potential case. Thus, going to order ¢ to
derive the Schrédinger equation means going to order 1° in expanding the exponential. This
will not only bring in an 4> term, but will also make the answer sensitive to the argument of
A in the linear term. Choose a =1/2 and verify that you get the one-dimensional version of
Eq. (4.3.7). Along the way you will see that changing a makes an order ¢ difference to y(x, €)
so that we have no choice but to use a =1/2, i.e., use the midpoint prescription. This point
will come up in Chapter 21.
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The Heisenberg
Uncertainty Relations

9.1. Introduction

In classical mechanics a particle in a state (x,, po) has associated with it well-
defined values for any dynamical variable w(x, p), namely, @(xo, po). In quantum
theory, given a state |y >, one can only give the probabilities P(@) for the possible
outcomes of a measurement of Q2. The probability distribution will be characterized
by a mean or expectation value

i @ =iy O.11)

and an uncertainty about this mean:

(AQ) = [yl Q=<KDY y>1” 9.12)

There are, however, states for which AQ =0, and these are the eigenstates |@ ) of Q.

If we consider two Hermitian operators Q and A, they will generally have some
uncertainties AQ and AA in an arbitrary state. In the next section we will derive the
Heisenberg uncertainty relations, which will provide a lower bound on the product
of uncertainties, AQ- AA. Generally the lower bound will depend not only on the
operators but also on the state. Of interest to us are those cases in which the lower
bound is independent of the state. The derivation will make clear the conditions
under which such a relation will exist.

9.2. Derivation of the Uncertainty Relations

Let Q and A be two Hermitian operators, with a commutator

v [Q, A]=iT (9.2.1)
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You may readily verify that I" is also Hermitian. Let us start with the uncertain!
product in a normalized state |y ): |

(AQ)(AAY =yl (Q = DI WIA =AY v (9-2-!
where (Q)>=<y|Q|lw> and {(A)>=y|Aly). Let us next define the pair

Q=Q-<Q)

A=A Ao 923

which has the same commutator as Q and A (verify this). In terms of Q and A

(AQY(AAY =yl w <y | Al |
=<{Qu|Qy > (Ay|Ay) (9.2

since

and
A*=ATA (9.25

If we apply the Schwartz inequality

[MPVa2 = K Val? 9.2

(where Athe equality sign holds only if | V;)>=c¢|V,), where ¢ is a constant) to
states |Qw) and |Ay), we get from Eq. (9.2.4),

(AQ’(AAY 2 [<Qy|Ay)|® 0.

Let us now use the fact that
QylAy)> =< yIQAly>=CyIQAly) (

to rewrite the above inequality as
(AQ)*(AAY 2 [Ky| QA y)I (EA

Now, we know that the commutator has to enter the picture somewhere. This
arrange through the following identity:

= %[Q, A]*— + %[Q’ A] (9.2. !



where [Q, Al is called the anticommutator. Feeding Eq. (9.2.10) into the inequality
(9.2.9), we get

(AQ (AN 2 [y 3[Q, Al + 3[Q, Ay (9.2.11)
We next use the fact that

(1) since [Q, A]=iT, where T is Hermitian, the expectation value of the com-
mutator is pure imaginary;

(2) since [Q, A], is Hermitian, the expectation value of the anticommutator is
real.

Recalling that |a+ib|*=a®+ b%, we get
(AQ)HAAY 2 3 <wl[Q, ALy + iy T )
> 3 WIIQ, ALy ) + ayIT )’ (9.2.12)

This is the general uncertainty relation between any two Hermitian operators and is
evidently state dependent. Consider now canonically conjugate operators, for which
I'=4. In this case

2

(AQ)Z(AA)Zz}1 W, ALl w>2+% ©9.2.13)

Since the first term is positive definite, we may assert that for any |y

(AQ*(AAY =1 /4

AQ-AA>7)2 (9.2.14)

which is the celebrated uncertainty relation. Let us note that the above inequality
becomes an equality only if

() Qlyd>=cAly)
and (9.2.15)

@) <yl Aly)>=0

9.3. The Minimum Uncertainty Packet
In this section we will find the wave function y(x) which saturates the lower

bound of the uncertainty relation for X and P. According to Eq. (9.2.15) such a
state is characterized by

(P={PY)ly)=c(X—<XD)ly> (0.3.1)
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and

YHP=(POYX —<XD) (X = LX) (P —LPY)ly>=0 (

where (P) and (X ) refer to the state |y, implicitly defined by these equatio
the X basis, Eq. (9.3.1) becomes

d
(—iﬁ P <P>> y(x)=c(x—<X>)y(x)
X

or

W) _ L pyte(e— (X)) dx (
v(x) *#

Now, whatever <X > may be, it is always possible to shift our origin (to x=«
so that in the new frame of reference <X >=0. In this frame, Eq. (9.3.3) ha
solution

Y(x) = y(0) e</7 e (
Let us next consider the constraint, Eq. (9.3.2), which in this frame reads
WHP=(PY)X+X(P—LKP))ly)>=0
If we now exploit Eq. (9.3.1) and its adjoint, we find

{yle* X+ eX 7 y)y=0
(c+c){yIXTy)>=0

from which it follows that ¢ is pure imaginary:

[ . - NN

c=1ilc| ¢

Our solution, Eq. (9.3.4) now becomes

‘l/(x) — ‘I/(O) ei(P)x/ﬁ e“|C|X2/2h

In terms of

A*=7/|c]

. 2 9
l//(x) — W(O) et(P)x/h e‘xz/ZA (



where A2, like |c|, is arbitrary. If the origin were not chosen to make (X ) zero, we
would have instead

W(x) = Y((X D) B> GmUONE gmlx= X228 93.7)

Thus the minimum uncertainty wave function is a Gaussian of arbitrary width and
center. This result, for the special case (X > ={P> =0, was used in the quest for the
state that minimized the expectation value of the oscillator Hamiltonian.

9.4. Applications of the Uncertainty Principle

I now illustrate the use of the uncertainty principle by estimating the size of the
ground-state energy and the spread in the ground-state wave function. It should be
clear from this example that the success we had with the oscillator was rather atypical.

We choose as our system the hydrogen atom. The Hamiltonian for this system,
assuming the proton is a spectator whose only role is to provide a Coulomb potential
for the electron, may be written entirely in terms of the electron’s variable as

_P2+Pl+ P} i

m X+ YR+Z)7 (G413

H

Let us begin by mimicking the analysis we employed for the oscillator. We evaluate
{H> in a normalized state |y ):

_(PIAPI+PD 2< 1 >
(H>» om € X7+ Y2+Zz)”2
PO+HPHHPDH 1
_PO 2m> p <(X2+Y2+Zz)'/2> (9.4.2)

Since
(PEY=(AP Y +{P)* etc.

the first step in minimizing (H ) is to work only with states for which {»P;>=0. For
such states

2 2 2
iy OPYHARY (4P —e2< ! > 9.43)

2m X2+ Y2+ZH'?

{ The operator (X?+ Y>+2?) "% is just 1/r in the coordinate basis. We will occasionally denote it by
1/r even while referring to it in the abstract, to simplify the notation.
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We cannot exploit the uncertainty relations

AP, AX>1/2, etc.

yet since (H) is not a function of AX and AP. The problem is
X2+ Y?+Z* 7%y is not simply related to AX, AY, and AZ. Now the handwavi
begins. We argue that (see Exercise 9.4.2),

1 1
<(X2+ Y2+Zz)1/2> ST zZY A G4

where the ~ symbol means that the two sides of Eq. (9.4.4) are not strictly eq
but of the same order of magnitude. So we write

(AP)’+(AP)’+ (AP, e

<H>2 m <(X2+Y2+Zz)1/2>

Once again, we argue that
X+ Y+ Z2) P = (X +(YH+(ZH)?
and geti

_(AP)*+ (AP’ +(AP.)* e

> 2m X+ +<Z)

From the relations
XD=(AX)+{X)* etc.

it follows that we may confine ourselves to states for which (X >=<¥Y>=<Z>=0
in looking for the state with the lowest mean energy. For such states

APZ+ AP} + AP} é

H)= 2m T [(AX)P+(AY ) +(AZ)]

For a problem such as this, with spherical symmetry, it is intuitively clear that
configuration of least energy will have

(AX)*=(AY) =(AZ)*

1 We are basically arguing that the mean of the functions (of X, Y, and Z) and the functions of the
mean ({X ), (Y, and {Z)) are of the same order of magnitude. They are in fact equal if there are no
fluctuations around the mean and approximately equal if the fluctuations are small (recall the discussiog
toward the end of Chapter 6).




and

(AP.)*=(AP,)’=(AP.)’
so that

(AP €

<H> - 2m 31/2 AX (9-4.5)

Now we use
AP AX=1/2
to get
2 2
(H>2 3% e

sm(AX)? 3/2AX
We now differentiate the right-hand side with respect to AX to find its minimum:

—6#* &
3+ 1/2 2=0
8m(AX) 3 2(AX)

_33HR 7
S o

- -

AX ~1.3 9.4.6
4me me* ( )
Finally,
—2me*
H>2 9.4.7

What prevents us from concluding (as we did in the case of the oscillator), that the
ground-state energy is —2me* /9% or that the ground-state wave function is a Gauss-
ian [of width 3(3'/%)#?/4me?] is the fact that Eq. (9.4.7) is an approximate inequality.
However, the exact ground-state energy

E,=—mé*/2I (9.4.8)
differs from our estimate, Eq. (9.4.7), only by a factor ~2. Likewise, the true ground-
state wave function is not a Gaussian but an exponential w(x,y,z)=

cexp[—(x* +y*+ 292 /a,], where

ao=H*/mé*
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CHAPTER 9
AX = #/meé* (94

which also is within a factor of 2 of the estimated AX in (9.4.6).
In conclusion, the uncertainty principle gives us a lot of information about
ground state, but not always as much as in the case of the oscillator.

Exercise 9.4.1.* Consider the oscillator in the state [n=1) and verify that

<L>~_1_~TE
X2/ XD A

Exercise 9.4.2. (1) By referring to the table of integrals in Appendix A.2, verify that

1

Y a)

elr/ao’ r:(x2+y2+22)l/2

is a normalized wave function (of the ground state of hydrogen). Note that in three dimensio
the normalization condition is

ylyd= J v*(r, 6, §)y(r. 0, $)r* dr d(cos 0) do
=4z Jw*(r)w(r)r2 dr=1

for a function of just r.
(2) Calculate (AX )* in this state [argue that (AX)?= §{r*>] and regain the result quo
in Eq. (9.4.9).
(3) Show that ¢1/r>~1/<{r>~me*/#* in this state.

Exercise 9.4.3. Ignore the fact that the hydrogen atom is a three-dimensional system &
pretend that

P2 2
Hej —ims (P=PERPLE=X4 V4
m

corresponds to a one-dimensional problem. Assuming

AP-AR>17i/2 !

Exercise 9.4.4.* Compute AT- AX, where T=P?/2m. Why is this relation not so famo

estimate the ground-state energy.



p 8
X2
Figure 9.1. At the point x,, skater 4 throws the snowball
towards skater B, who catches it at the point x.

9.5. The Energy-Time Uncertainty Relation

There exists an uncertainty relation
AE-At>#/2 9.5.1)

which does not follow from Eq. (9.2.12), since time 7 is not a dynamical variable
but a parameter. The content of this equation is quite different from the others
involving just dynamical variables. The rough meaning of this inequality is that the
energy of a system that has been in existence only for a finite time At has a spread
(or uncertainty) of at least AE, where AE and At are related by (9.5.1). To see how
this comes about, recall that eigenstates of energy have a time dependence e /%
ie., a definite energy is associated with a definite frequency, o = E/f. Now, only a
wave train that is infinitely long in time (that is to say, a system that has been in
existence for infinite time) has a well-defined frequency. Thus a system that has been
in existence only for a finite time, even if its time dependence goes as e~ *"/* during
this period, is not associated with a pure frequency @ = E/# or definite energy E.

Consider the following example. At time =0, we turn on light of frequency w
on an ensemble of hydrogen atoms all in their ground state. Since the light is supposed
to consist of photons of energy fiw, we expect transitions to take place only to a
level (if it exists) #iw above the ground state. It will however be seen that initially
the atoms make transitions to several levels not obeying this constraint. However,
as ¢ increases, the deviation AE from the expected final-state energy will decrease
according to AE~"fi/t. Only as t—oco do we have a rigid law of conservation of
energy in the classical sense. We interpret this result by saying that the light source
is not associated with a definite frequency (i.e., does not emit photons of definite
energy) if it has been in operation only for a finite time, even if the dial is set at a
definite frequency @ during this time. [The output of the source is not just e " but
rather 0(f) e ™', whose transform is not a delta function peaked at @.] Similarly
when the excited atoms get deexcited and drop to the ground state, they do not emit
photons of a definite energy E= E,— E, (the subscripts ¢ and g stand for “excited”
and “ground”) but rather with a spread AE~7#/At, At being the duration for which
they were in the excited state. [The time dependence of the atomic wave function is
not e %% but rather 0()8(T—t) e "“/* assuming it abruptly got excited to this
state at 1=0 and abruptly got deexcited at 1= T.] We shall return to this point when
we discuss the interaction of atoms with radiation in a later chapter.

Another way to describe this uncertainty relation is to say that violations in the
classical energy conservation law by AE are possible over times Ar~#/AE. The
following example should clarify the meaning of this statement.

Example 9.5.1. (Range of the Nuclear Force.) Imagine two ice skaters each equipped

with several snowballs, and skating toward each other on trajectories that are parailel but
separated by some perpendicular distance (Fig. 9.1). When skater 4 reaches some point x,

245

THE HEISENBERG
UNCERTAINTY
RELATIONS



246

CHAPTER 9

let him throw a snowball toward B. He (A) will then recoil away from B and start mo‘}
along a new straight line. Let B now catch the snowball. He too will recoil as a result, |
shown in the figure. If this whole process were seen by someone who could not see the sn
balls, he would conclude that there is a repulsive force between A and B. If 4 (or B)
throw the ball at most 10 ft, the observer would conclude that the range of the force is 10
meaning 4 and B will not affect each other if the perpendicular distance between them ex
10 ft.

This is roughly how elementary particles interact with each other: if they throw phot
at each other the force is called the electromagnetic force and the ability to throw and caf
photons is called “electric charge.” If the projectiles are pions the force is called the nuclg
force. We would like to estimate the range of the nuclear force using the uncertainty princip|
Now, unlike the two skaters endowed with snowballs, the protons and neutrons (i.e., nucleod
in the nucleus do not have a ready supply of pions, which have a mass u and energy uc’.
nucleon can, however, produce a pion from nowhere (violating the classical law of ener
conservation by ~ uc’) provided it is caught by the other nucleon within a time Af such
At~7i/AE="%/uc. Even if the pion travels toward the receiver at the speed of light, it d
only cover a distance r=c At="7i/pc, which is called the Compton wavelength of the pion
is a measure of the range of nuclear force. The value of r is approximately 1 Fermi=10"" |

The picture of nuclear force given here is rather simpleminded and should be taken wi
a grain of salt. For example, neither is the pion the only particle that can be “exchangel
between nucleons nor is the number of exchanges limited to one per encounter. (The pion’
however, the lightest object that can be exchanged and hence responsible for the nuclear for
of the longest range.) Also our analogy with snowballs does not explain any attractive int¢
action between particles.




10

Systems with N Degrees
of Freedom

10.1. N Particles in One Dimension

So far, we have restricted our attention (apart from minor digressions) to a
system with one degree of freedom, namely, a single particle in one dimension. We
now consider the quantum mechanics of systems with N degrees of freedom. The
increase in degrees of freedom may be due to an increase in the number of particles,
number of spatial dimensions, or both. In this section we consider N particles in one
dimension, and start with the case N=2.

The Two-Particle Hilbert Space

Consider two particles described classically by (x;, p1) and (x2, p,). The rule
for quantizing this system [Postulate II, Eq. (7.4.39)] is to promote these variables
'to quantum operators (X,, P;) and (X», P,) obeying the canonical commutation
relations:

[(Xi, P =ifi{x;, p;} =ik,  (i=1,2) (10.1.1a)

; [Xi, Xj]=ifi{xi, x;} =0 (10.1.1b)
(P, P))=ifi{pi, p;} =0 (10.1.1¢)
i

: It might be occasionally possible (as it was in the case of the oscillator) to extract
+all the physics given just the canonical commutators. In practice one works in a
: basis, usually the coordinate basis. This basis consists of the kets |x;x>)> which are
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simultaneous eigenkets of the commuting operators X, and X :

X1|X1X2>=X1|X1X2>

(10.12)
Xolxix2) = Xo| X1%2)
and are normalized as}
{x1x5| x1%2) = 6 (xy — x1) 6 (x5 — x2) (10.1.3)
In this basis
ly) =X y)=w(x1, x2)
X[—>x,‘ (1014)
Po—ifi < &
X; %
We may interpret
P(xy, x3) = | x| wH? (10.1.5)

as the absolute probability density for catching particle 1 near x, and particle 2 near
X, , provided we normalize | ) to unity '

1=<w|w>=fl<x1lev/>l2 dx, dx2=jP(x1, x2) dx; dx, (10.1.6)

There are other bases possible besides | x;x,>. There is, for example, the momentum
basis, consisting of the simultaneous eigenkets | p1p,)> of P, and P,. More generally,
we can use the simultaneous eigenkets |w,w,> of two commuting operators§
Q,(X1, Py) and (X, P;) to define the Q basis. We denote by V, g, the two-particle
Hilbert space spanned by any of these bases. i

V12 As a Direct Product Space
There is another way to arrive at the space Vig,, and that is to build it out of
two one-particle spaces. Consider a system of two particles described classically by
(xy, p1) and (xz, p>). If we want the quantum theory of just particle 1, we define
operators X; and P, obeying
(X1, Pi)=ikl (10.1.7)

The eigenvectors |x,» of X form a complete (coordinate) basis for the Hilbert space

1 Note that we denote the bra corresponding to |xix3> as {xjxj|.
§ Note that any function of X, and P, commutes with any function of X, and P,. .



V, of particle 1. Other bases, such as | p,) of P, or in general, |@,) of Q,(X,, P))
are also possible. Since the operators X;, P;, Q,, etc., act on V,, let us append a
superscript (1) to all of them. Thus Eq. (10.1.7) reads

X, P)= k1" (10.1.82)

where I is the identity operator on V. A similar picture holds for particle 2, and
in particular,

(X9, PP =ihI® (10.1.8b)

Let us now turn our attention to the two-particle system. What will be the
coordinate basis for this system? Previously we assigned to every possible outcome
x, of a position measurement a vector |x; in V, and likewise for particle 2. Now a
position measurement will yield a pair of numbers (x;, x2). Since after the measure-
ment particle 1 will be in state | x;» and particle 2 in | x,), let us denote the correspond-
mg ket by |x)®|x2):

article 1 at
Ix1>®|xz><—>{p e an (10.1.9)

particle 2 at x;

Note that |x,>®|x,) is a new object, quite unlike the inner product {y|y>)
or the outer product |w;>{y,| both of which involve two vectors from the same
space. The product |x,>®]|x,), called the direct product, is the product of vectors
from two different spaces. The direct product is a linear operation:

;4 (alx:)+ @' [x)D)Q (Blx2)) = aflxd®|x2) + &' Blx1D®|x2)  (10.1.10)

The set of all vectors of the form | x; > ®|x,> forms the basis for a space which we call
V1®V>, and refer to as the direct product of the spaces V, and V, . The dimensionality
(number of possible basis vectors) of V,®V, is the product of the dimensionality
of V, and the dimensionality of V,. Although all the dimensionalities are infinite
here, the statement makes heuristic sense: to each basis vector [x;) of V,; and |x,)
of V,, there is one and only one basis vector |x,>®|x;> of V;®V,. This should be
compared to the direct sum (Section 1.4):

Vig2=V,®V,

in which case the dimensionalities of V, and V, add (assuming the vectors of V,
are linearly independent of those of V,).

The coordinate basis, | x;)®|x2), is just one possibility; we can use the momen-
tum basis | p1>®| p»), or, more generally, |w,)®|@,). Although these vectors span
Vi® V>, not every element of V@V, is a direct product. For instance

> =IxD®|x2) +[x1D®x2)
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cannot be written as

lv>=lvi)®|v.)

where |y,) and |y,) are elements of V, and V,, respectively.
The inner product of |x;>®|x,> and [ x> ®|x5) is

({1 @) x1D ®l x> ) = {xalxy X3 x2)
=6(x;—x1)0(x3— x3) (10.L.1Y)

Since any vector in V,®V; can be expressed in terms of the |x;>®|{x,) basis, this
defines the inner product between any two vectors in V;®@V,.

It is intuitively clear that when two particles are amalgamated to form a single
system, the position and momentum operators of each particle, X{*, P{"’ and X,
P{?, which acted on V, and V,, respectively, must have counterparts in V,@V,
and have the same interpretation. Let us denote by X{"® the counterpart of
XY, and refer to it also as the “X operator of particle 1.” Let us define its action
on V;®V,. Since the vectors |x;>®|x,) span the space, it suffices to define its action
on these. Now the ket [x;>®]|x,)> denotes a state in which particle 1 is at x;. Thus
it must be an eigenket of X {"®@ with eigenvalue x, :

XD x®|x2) = x11 x> ®|x2) (10..1

Note that X{V®® does not really care about the second ket |x,), i.€., it acts trivially
(as the identity) on |x,)> and acts on |x;) just as X{" did. In other words

XPOPx) ®1x2) =1X Vx> @ Pxz) (10113

Let us define a direct product of two operators, T'{" and AY (denoted by I'\"®
AP), whose action on a direct product ket |, >®|w,) is

TRAD) 0@ w) =T Po>Q|AP w2 (10.1.14)
In this notation, we may write X {"®®, in view of Eq. (10.1.13), as
XAy ® (10.1.15)

We can similarly promote P§>, say, from V; to V,®V, by defining the momentum
operator for particle 2, P{V®®, as

P{HO@ = (g p@ (10.1.16)

The following properties of direct products of operators may be verified (say
by acting on the basis vectors |x;>®[x2)): -



Exercise 10.1.1.*¥ Show the following:

1 QNI 1"®AY]=0 for any Q" and AP (10.1.17a)
(operators of particle 1 commute with those of particle 2).

@ (QORI)HN®AP) = (@)@ (TA)” (10.1.17b)

3) If

[@, AP =T
then
[QME AN =TV (10.1.17c)

and similarly with 1-2.

@ QPP +QNeD) = @HORIP+IV® ()P +20"®0”  (10.1.17d)

" The notion of direct products of vectors and operators is no doubt a difficult
one, with no simple analogs in elementary vector analysis. The following exercise
should give you some valuable experience. It is recommended that you reread the
preceding discussion after working on the exercise.

Exercise 10.1.2.* Tmagine a fictitious world in which the single-particle Hilbert space is
two-dimensional. Let us denote the basis vectors by |+) and |—>. Let

+ - + -
+|la b +|e
0'(1"=_L d] and 0'(22’=_[g {z }

be operators in V, and Vs, respectively (the =+ signs label the basis vectors. Thus
b=(+|o{"|—> etc.) The space V,®V, is spanned by four vectors >R+, |+>®1->,
|—>@1+), |—>®—>. Show (using the method of images or otherwise) that

++ 4= =t
+4+[ a 0 b 0
1) o =g@IP=4-| 0 a 0 b
—4| ¢ 0 d 0
—1 0 ¢ 0 d
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(Recall that (a|®<{p| is the bra corresponding to |a)>®|B>.)

e £ 0 0
h 00
2 mea |8
2 o2 00 e f
00 g h
ae af be bf
h bg bh
3 MBD . g =| ¥ @
(3) (0102) o1 ®03 ce of de df
cg ch dg dh

Do part (3) in two ways, by taking the matrix product of 6{"®® and ¢4”®® and by directly
)%

computing the matrix elements of ¢{"® 5.

From Egs. (10.1.17a) and (10.1.17¢) it follows that the commutation relations
between the position and momentum operators on V,®V, are

[X DD pOOD] =55 [ORQ[D = ifi§, VS

[X(POD (8] [phed pHed]=(  ; j=1,2 (10.1.18)

Now we are ready to assert something that may have been apparent all along:
the space V,®V, is just Vg, |x1>®]x2) is just |x,x,), and X {"® is just X, etc.
Notice first that both spaces have the same dimensionality: the vectors |x;x,) and
}x1)®|x2) are both in one-to-one correspondence with points in the x; — x; plane.
Notice next that the two sets of operators Xi, . .., P,and X{"®®, .| P{M®O pape
the same connotation and commutation rules [Egs. (10.1.1) and (10.1.18)]. Since X
and P are defined by their commutators we can make the identification

xhe@—y, p
(10.1.19a)

P,'(])®(2) =P, ‘

We can also identify the simultaneous eigenkets of the position operators (since they
are nondegenerate): : )

[X1>® %2> = |x1%2) (10@

In the future, we shall use the more compact symbols occurring on the right-hand
side of Egs. (10.1.19). We will, however, return to the concept of direct products of
vectors and operators on and off and occasionally use the symbols on the left-hand
side. Although the succinct notation suppresses the label (1®2) of the space on



which the operators act, it should be clear from the context. Consider, for example,
the CM kinetic energy operator of the two-particle system:

Py P4 _(P\+P)’ PI+P}+2PP,
2m +my) 2M IM IM

CM

which really means

2MT8K4®(2)=(P|2)(1)®(2)+(P22)(])®(2)+2P1(1)®(2) . P§1)®(2)

=(P{"®I?)+(IV®P{)y +2P{"®@ P

The Direct Product Revisited

Since the notion of a direct product space is so important, we revisit the forma-
tion of V&5 as a direct product of V; and V,, but this time in the coordinate basis
instead of in the abstract. Let Q" be an operator on V, whose nondegenerate
eigenfunctions v, (x1)=o(x,) form a complete basis. Similarly let w»(x,) form a
basis for V,. Consider now a function w(x,, x»), which represents the abstract
ket |v) from V,g,. If we keep x; fixed at some value, say X, then v becomes a
function of x, alone and may be expanded as

Y (X%, x2) =Y Co,(¥1)@2(x2) (10.1.20)

@2

Notice that the coefficients of the expansion depend on the value of X;. We now
expand the function C,,(X;) in the basis @,(X):

sz(i]):z Cwl,wza)](il) (10121)

(21

Feeding this back to the first expansion and dropping the bar on ¥, we get

(X1, x2) =Y Y Co, 0,01(X1)@02(x2) (10.1.22a)

@) @z

What does this expansion of an arbitrary y(x;, x,) in terms of @;(x;) X w,(x;) imply?
Equation (10.1.22a) is the coordinate space version of the abstract result

¥)=% ¥, Carwd 0> ® @) (10.1.22b)
which means V,g,=V,®V,, for |y) belongs to V,g» and |@,)®|®,) spans
V®V,. If we choose Q=X, we get the familiar basis |x;)®|x;). By dotting both
sides of Eq. (10.1.22b) with these basis vectors we regain Eq. (10.1.22a). (In the
coordinate basis, the direct product of the kets |@,) and |w,) becomes just the
ordinary product of the corresponding wave functions.)
Consider next the operators. The momentum operator on V,, which used to be
—ifid/dx; now becomes —i#i 0/0x,, where the partial derivative symbol tells us it
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operates on x; as before and leaves x, alone. This is the coordinate space version
POED=pRID You are encouraged to pursue this analysis further.

Evolution of the Two-Particle State Vector

The state vector of the system is an element of V.. It evolves in time accordin
to the equation

2 2
iﬁlli/>={£]~+;2—+ V(X]aXZ)}|W>:HlW> (10.1.

2m, 2m,

There are two classes of problems.
Class A: H is separable, i.e.,

2 2

H=§n~]]+ V](X])+§nz;+ Va(X2)=H, + H; (10.1,
Class B: H is not separable, i.e.,
VX1, X2) # Vi(X1) + Vi X2)
and

H+#H +H, (10.12

Class A corresponds to two particles interacting with external potentials ¥ and ¥,
but not with each other, while in class B there is no such restriction. We now examine
these two classes.

Class A: Separable Hamiltonians. Classically, the decomposition

H = H(x1, pr)+H(x2, pa2)

means that the two particles evolve independently of each other. In particular, thei
energies are separately conserved and the total energy E is E, + E;. Let us see thex
results reappear in quantum theory. For a stationary state,

[w(0)>=|E) e ™" (10.1.
Eq. (10.1.23) becomes

[H\(X,, P,) + Ha(X2, P)JE>=E|E> (10.1.21



Since [H,, H,] =0 [Eq. (10.1.17a)] we can find their simultaneous eigenstates, which
are none other than |E,>®|E,>=|E E,), where |E,) and |E,) are solutions to

H{V|Ey=E|E) (10.1.28a)
and
HP\E))=E)\|Ey) (10.1.28b)

It should be clear that the state | E,)®]|E;) corresponds to particle 1 being in
the energy eigenstate |E; ) and particle 2 being in the energy eigenstate | E,). Clearly

HE)=(H+H)E)Q|E)=(E+E)E)RE)=(E + E)E)
so that

E=E+E, (10.1.28¢c)

(The basis | E; Y®| E,> is what we would get if in forming basis vectors of the direct
product V,®V,, we took the energy eigenvalues from each space, instead of, say,
the position eigenvectors.) Finally, feeding |E)=|E|>)®|E,>, E=E,+ E, into Eq.
(10.1.26) we get

(w(n)>=|E) e B Q| Ey)y e /" (10.1.29)

It is worth rederiving Egs. (10.1.28) and (10.1.29) in the coordinate basis to
illustrate a useful technique that you will find in other textbooks. By projecting the
cigenvalue Eq. (10.1.27) on this basis, and making the usual operator substitutions,
Eq. (10.1.4), we obtain

-1 3 2 A2
— 4V, —_ 4V i -E ’
[Zml ox7 1) 2m, 0x3 Z(XZ)} Ve(xi, X2) = By e(x1, X2)
where
L Ve, x2) = vl E) (10.1.30)

We solve the equation by the method of separation of variables. We assume

ve(x1, X2) =Y 5 (X) W r(X2) (10.1.31)

The subscripts E; and E, have no specific interpretation yet and merely serve as
labels. Feeding this amsatz into Eq. (10.1.30) and then dividing both sides by

255

SYSTEMS WITH
N DEGREES
OF FREEDOM



256
CHAPTER 10

W e (X1) VE(X2) We get

32 A2
: [ oy Vl(xl)}w\(xl)

WEl(xl) ;’l: 0xy
1 % ]
2 05 =k 10.
WEz(XZ) {Zmz axg 2(x2) WEz()Q) (

This equation says that a function of x, alone, plus one of x, alone, equals a constant
E. Since x; and x;, and hence the two functions, may be varied independently, i
follows that each function separately equals a constant. We will call these constants
E, and E,. Thus Eq. (10.1.32) breaks down into three equations:

g2 2
1 [ i i'*’ Vl(xl):!WEl(xl)=El

WEl(xl) 2m, ax%

1 {_hz . )} (x2) = E
— X (xy) =
sz(xz) 2,y 5x§ AX2) W EAX2 2
E +E,=E
Consequently
WE(xl » X2, t) = WE(xl s x2) e.—iEl/ﬁ
=Yg (x1) € B Py g (xg) €7 (10.1.34)

where y g, and v, are eigenfunctions of the one-particle Schrodinger equation with
eigenvalues E, and E,, respectively. We recognize Eqs. (10.1.33) and (10.1.34) to be
the projections of Eqgs. (10.1.28) and (10.1.29) on |x;x2) =|x1)®|x2).

Case B: Two Interacting Particles. Consider next the more general problem of
two interacting particles with ‘

2 2
=10 P 4y ) (10.1.35)
2m] 2m2

where
V(x1, x2) # Vi(x1) + V(xz)

Generally this cannot be reduced to two independent single-particle problems. If,
however,

V(xi, x2)= V(x1—x2) (110.1.36)



which describes two particles responding to each other but nothing external, one can
always, by employing the CM coordinate

m1x1+m2x2

(10.1.37a)

'U; XcMm
* my+m,

and the relative coordinate
’)‘ X=X17 X2 (10137b)

reduce the problem to that of two independent fictitious particles: one, the CM,
which is free, has mass M =m,; +m; and momentum

5 . .
Pcem = MXcm=myx, +mpx;

and another, with the reduced mass g = mm,/(m, +m,), momentum p= ux, moving
under the influence of V(x):

H (X1, pr; X2, p2) = H(Xem, Pom; X, )
2 2
Pcm P
2# +=%eaive=—-+“_+Vx 10138
™ wie =t o (x) ( )

which is just the result from Exercise 2.5.4 modified to one dimension. Since the new

variables are also canonical (Exercise 2.7.6) and Cartesian, the quantization condi-
tion is just

[XCM,PCM]:‘l.h (101393)

[X, Pl=in (10.1.39b)

and all other commutators zero. In the quantum theory,

v P
g=Ltou P V(X) (10.1.40)
2M  2u

and the eigenfunctions of H factorize:

ipcm xem/ i
¥ e(xcm, X) ~ @iy ¥ Eo(X)
2 (10.1.41)
E<PMi g,
2M

The real dynamics is contained in yg (x) which is the energy eigenfunction for a
particle of mass p in a potential ¥(x). Since the CM drifts along as a free particle,
one usually chooses to study the problem in the CM frame. In this case Ecm=
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penm/2M drops out of the energy, and the plane wave factor in y representing
motion becomes a constant. In short, one can forget all about the CM in the quan
theory just as in the classical theory.

N Particles in One Dimension

All the results but one generalize from N=2 to arbitrary N. The only exce
is the result from the last subsection: for N> 2, one generally cannot, by using
and relative coordinates (or other sets of coordinates) reduce the problem
independent one-particle problems. There are a few exceptions, the most fa
ones being Hamiltonians quadratic in the coordinates and momenta which may b
reduced to a sum over oscillator Hamiltonians by the use of normal coordinates. In
such cases the oscillators become independent and their energies add both in the
classical and quantum cases. This result (with respect to the quantum oscillators)
was assumed in the discussion on specific heats in Chapter 7.

Exercise 10.1.3.* Consider the Hamiltonian of the coupled mass system:

p2 pZ 1
”z_'_*__i_}__mwz[xf-}-x%"' (x1 —xz)z]
2m 2m 2

We know from Example 1.8.6 that # can be decoupled if we use normal coordinates

x1£x;
X< 2172
and the corresponding momenta
_nEp;
Pin= ‘2‘,/2_

(1) Rewrite 5 in terms of normal coordinates. Verify that the normal coordinat
also canonical, i.e., that

{x;,p;} =6, etc.; i j=111
Now quantize the system, promoting these variables to operators obeying
[X,, P,]=ifb etc.;  i,j=11I

Write the eigenvalue equation for H in the simultaneous eigenbasis of X, and X;.

(2) Quantize the system directly, by promoting x,, x>, pi, and p» to quantum operators.
Write the eigenvalue equation for A in the simultaneous eigenbasis of X; and X5. Now chan,
from x,, x, (and of course 9/0x,, 9/0x,) to x1, xi (and 0/0x,, 0/0x1,) in the dz’ﬂerenlzg
equation. You should end up with the result from part (1).

In general, one can change coordinates and then quantize or first quantize and then
change variables in the differential equation, if the change of coordinates is canonical. (We
are assuming that all the variables are Cartesian. As mentioned earlier in the book, if one wants



to employ non-Cartesian coordinates, it is best to first quantize the Cartesian coordinates and
then change variables in the differential equation.)

10.2. More Particles in More Dimensions

Mathematically, the problem of a single particle in two dimensions (in terms of
Cartesian coordinates) is equivalent to that of two particles in one dimension. It is,
however, convenient to use a different notation in the two cases. We will denote the
two Cartesian coordinates of the single particle by x and y rather than x; and x,.
Likewise the momenta will be denoted by p, and p,. The quantum operators will be
called X and Y; and P., and P,, their common eigenkets |xy), |p.p,>, respectively,
and so on. The generalization to three dimensions is obvious. We will also write a
position eigenket as |r)> and the orthonormality relation {xyz|x'y'z')=
S(x=x)8(y—y)8(z—z2) as <r|r'y=8’(r—r’). The same goes for the momentum
eigenkets |p) also. When several particles labeled by numbers 1, . .., N are involved,
this extra label will also be used. Thus |p,p,) will represent a two-particle state in
which particle 1 has momentum p; and particle 2 has momentum p, and so on.

Exercise 10.2.1* (Particle in a Three-Dimensional Box). Recall that a particle in a one-
dimensional box extending from x =0 to L is confined to the region 0 <x < L; its wave function
vanishes at the edges x =0 and L and beyond (Exercise 5.2.5). Consider now a particle confined
in a three-dimensional cubic box of volume L’. Choosing as the origin one of its corners, and
the x, y, and z axes along the three edges meeting there, show that the normalized energy
eigenfunctions are

1/2 1/2 1/2
ve(x,y, z)= (2) sin(né—xﬂx> <z> sin(——ny ﬂy) (2) sin(-—nzﬂz>
AR ETL L/\L L /\L L
where
’ e
g E=2ML2 (n2+ni+n?)

and n; are positive integers.

Exercise 10.2.2.* Quantize the two-dimensional oscillator for which

2 2
>+ 1 1
# =P+~ mewdy
i 2m 2 2

(1) Show that the allowed energies are
E=(n.+1/ %0+ (n,+1/)kw,, n.,n,=0,12 ...
(2) Write down the corresponding wave functions in terms of single oscillator wave

functions. Verify that they have definite parity (even/odd) number x——x, y——yp and that
the parity depends only on n=n,+n,.
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, \ Figure 10.1. Two identical billiard balls start near holes | and

S “ end up in holes 3 and 4, respectively, as predicted by P,. Th
- AN diction of P,, that they would end up in holes 4 and 3, respectively
@) @) is wrong, even though the two final configurations would be indis
! t=0 (— 2 tinguishable to an observer who walks in at t=T.

(3) Consider next the isotropic oscillator (w,=®,). Write explicit, normalized eigen.
functions of the first three states (that is, for the cases »=0 and 1). Reexpress your results ia

terms of polar coordinates p and ¢ (for later use). Show that the degeneracy of a level with
E=(n+1)iwis (n+1).

Exercise 10.2.3.* Quantize the three-dimensional isotropic oscillater for which

I+pi+p? 1
=P TP L 2 +y +2%)
2m 2
(1) Show that E=(n+3/2)fiw; n=n.+n,+n.;n.,n,,n=012 ...,
(2) Write the corresponding eigenfunctions in terms of single-oscillator wave functions
and verify that the parity of the level with a given n is (—1)”. Reexpress the first four states

in terms of spherical coordinates. Show that the degeneracy of a level with energy £=
(n+3/2)fo is (n+1)(n+2)/2.

10.3. Identical Particles

The formalism developed above, when properly applied to a system containing
identical particles, leads to some very surprising results. We shall say two particles
are identical if they are exact replicas of each other in every respect—there should
be no experiment that detects any intrinsic} difference between them. Although the

definition of identical particles is the same classically and quantum mechanically.
the implications are different in the two cases.

The Classical Case

Let us first orient ourselves by recapitulating the situation in classical physics.
Imagine a billiard table with four holes, numbered 1 through 4 (Fig. 10.1). Near
holes 1 and 2 rest two identical billiard balls. Let us call these balls 1 and 2. The
difference between the labels reflects not any intrinsic difference in the balls (for they

are identical) but rather a difference in their environments, namely, the holes near
which they find themselves.

1 By intrinsic [ mean properties inherent to the particle, such as its charge or mass and not its locatior
or momentum.



Now it follows from the definition of identity, that if these two balls are
exchanged, the resulting configuration would appear exactly the same. Nonetheless
these two configurations are treated as distinct in classical physics. In order for this
distinction to be meaningful, there must exist some experiments in which these two
configurations are inequivalent. We will now discuss one such experiment.

Imagine that at time 1=0, two players propel the balls toward the center of the
table. At once two physicists P, and P, take the initial-value data and make the
following predictions:

P ball 1 goes to hole 3} at =T
ball 2 goes to hole 4

P ball 1 goes to hole 4} att=T
ball 2 goes to hole 3

Say at time T we find that ball 1 ends up in hole 3 and ball 2 in hole 4. We
declare that P, is correct and P, is wrong. Now, the configurations predicted by
them for ¢=T differ only by the exchange of two identical particles. If seen in
isolation they would appear identical: an observer who walks in just at r=T and is
given the predictions of P; and P, will conclude that both are right. What do we
know about the balls (that allows us to make a distinction between them and hence
the two outcomes), that the newcomer does not? The answer of course is—their
histories. Although both balls appear identical to the newcomer, we are able to trace
the ball in hole 3 back to the vicinity of hole 1 and the one in hole 4 back to hole
2. Similarly at =0, the two balls which seemed identical to us would be distin-
guishable to someone who had been following them from an earlier period. Now of
course it is not really necessary that either we or any other observer be actually
present in order for this distinction to exist. One imagines in classical physics the
fictitious observer who sees everything and disturbs nothing; if he can make the
distinction, the distinction exists.

To summarize, it is possible in classical mechanics to distinguish between ident-
ical particles by following their nonidentical trajectories (without disturbing them in
any way). Consequently two configurations related by exchanging the identical parti-
cles are physically nonequivalent.

An immediate consequence of the above reasoning, and one that will play a
dominant role in what follows, is that in quantum theory, which completely outlaws
the notion of continuous trajectories for the particles, there exists no physical basis
for distinguishing between identical particles. Consequently two configurations
related by the exchange of identical particles must be treated as one and the same
configuration and described by the same state vector. We now proceed to deduce
the consequences of this restriction.

Two-Particle Systems—Symmetric and Antisymmetric States

Suppose we have a system of two distinguishable particles 1 and 2 and a position
measurement on the system shows particle 1 to be at x=a and particle 2 to be at
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x=bh. We write the state just after measurement as
ly>=|x1=a,x,=b)=\ab) (1031

where we are adopting the convention that the state of particle 1 is described by the
first label (a) and that of particle 2 by the second label (b). Since the particles are
distinguishable, the state obtained by exchanging them is distinguishable from the
above. It is given by

ty>=lba)

and corresponds to having found particle 1 at b and particle 2 at a.

Suppose we repeat the experiment with two identical particles and catch one at
x=a and the other at x=5. Is the state vector just after measurement jab) or |ba)!
The answer is, neither. We have seen that in quantum theory two configurations
related by the exchange of identical particles must be viewed as one and the same
and be described by the same state vector. Since | ) and a|y ) are physically equiva-
lent, we require that [w(a, b)), the state vector just after the measurement, satisfy
the constraint

ly(a, b)>=aly(b, a) (10,

where ¢ is any complex number. Since under the exchange

lab) « |ba

and the two vectors are not multiples of each other} (i.e., are physically distinct)
neither is acceptable. The problem is that our position measurement yields not an
ordered pair of numbers (as in the distinguishable particle case) but just a pair of
numbers: to assign them to the particles in a definite way is to go beyond what is
physically meaningful in quantum theory. What our measurement does permit us to
conclude is that the state vector is an eigenstate of X; + X, with eigenvalue a+ b, the
sum of the eigenvalue being insensitive to how the values a and b are assigned to
the particles. In other words, given an unordered pair of numbers a and b we can
still define a unique sum (but not difference). Now, there are just two product vectors,
laby and |ba) with this eigenvalue, and the state vector lies somewhere in the two-
dimensional degenerate (with respect to X, +X,) eigenspace spanned by them. Let
|w(a, b)>=pBlab)+ylba) be the allowed vector. If we impose the constraint
Eq. (10.3.2):

Blab) +v|ba) = a[Blbay +y|ab}]
we find, upon equating the coefficients of |ab) and |ba) that

B=ay, y=ap 44

I We are assuming a#b. If a=b, the state is acceptable, but the choice we are agonizing over does
arise.



so that
a==l1 (10.3.3)
It is now easy to construct the allowed state vectors. They are
|ab, S =|ab)+|ba> (10.3.4)
called the symmetric state vector (¢ =1) and
|ab, 4> =|ab> —|ba) (10.3.5)
called the antisymmetric state vector (¢ =—1). (These are unnormalzzed vectors. Their
normalization will be taken up shortly.)
More generally, if some variable Q is measured and the values @, and w, are
obtained, the state vector immediately following the measurement is either |®1@,, S )
or |@,m,, A>.}1 Although we have made a lot of progress in nailing down the state

vector corresponding to the measurement, we have still to find a way to choose
between these two alternatives.

Bosons and Fermions

Although both S and A states seem physically acceptable (in that they respect
jthe indistinguishability of the particles) we can go a step further and make the
following assertion:

A given species of particles must choose once and for all between S and A4 states.

P Suppose the contrary were true, and the Hilbert space of two identical particles
Pontained both .S and A vectors. Then the space also contains linear combinations
jsuch as

R ly>=a|oo,, S+ Blojos, 4)

hich are neither symmetric nor antisymmetric. So we rule out this possibility.
- Nature seems to respect the constraints we have deduced. Particles such as the
bon, photon, and graviton are always found in symmetric states and are called
Josons, and particles such as the electron, proton, and neutron are always found in
ntisymmetric states and are called fermions.

Thus if we catch two identical bosons, one at x=a and the other at x=25, the
ate vector immediately following the measurement is

ly>=|x1=a,x,=b)+|x=b, x,=a)
=l|ab)+|bay=|ab, S>

I We are assuming Q is nondegenerate. If not, let @ represent the eigenvalues of a complete set of
commuting operators.
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Had the particles been fermions, the state vector after the measurement would
been

ly>=I|x1=a, x2=b)—x1=b, xy=a)=lab) —|ba)
=lab, 45

Note that although we still use the labels x, and x,, we do not attach them to
particles in any particular way. Thus having caught the bosons at x=g and x=
we need not agonize over whether x, =a and x, =5 or vice versa. Either choice le
to the same |y ) for bosons, and to state vectors differing only by an overall sig
for fermions.

We are now in a position to deduce a fundamental property of fermions, v
results from the antisymmetry of their state vectors. Consider a two-fermion ‘

|w1@,, AY=|w0102) — | 0201
Let us now set @, =w,=w. We find
low, A>=|ovo)—|oo>=0 (10361

This is the celebrated Pauli exclusion principle: Two identical fermions cannot
the same quantum state. This principle has profound consequences—in statisty
mechanics, in understanding chemical properties of atoms, in nuclear theory, as
physics, etc. We will have occasion to return to it often.

With this important derivation out of our way, let us address a question tha
may have plagued you: our analysis has only told us that a given type of partick,
say a pion, has to be either a boson or a fermion, but does not say which one. There
are two ways to the answer. The first is by further cerebration, to be specific, withi
the framework of quantum field theory, which relates the spin of the particle toh'a
“statistics”—which is the term physicists use to refer to its bosonic or fermionic
nature. Since the relevant arguments are beyond the scope of this text I merely quote
the results here. Recall that the spin of the particle is its internal angular momentum.
The magnitude of spin happens to be an invariant for a particle (and thus serves
a label, like its mass or charge) and can have only one of the following values:
#/2, h, 3%/2, 2%, . . . . The spin statistics theorem, provable in quantum field theo
asserts that particles with (magnitude of spin) equal to an even multiple of /2
bosons, and those with spin equal to an odd multiple of 7i/2 are fermions. Howeve®
this connection, proven in three dimensions, does not apply to one dimension, wher
it is not possible to define spin or any form of angular momentum. (This should be
clear classically.) Thus the only way to find if a particle in one dimension is a boson
or fermion is to determine the symmetry of the wave function experimentally. This
is the second method, to be discussed in a moment.

Before going on to this second method, let us note that the requirement thal
the state vector of two identical particles be symmetric or antisymmetric (under the
exchange of the quantum numbers labeling them) applies in three dimensions as
well, as will be clear by going through the arguments in one dimension. The only
difference will be the increase in the number of labels. For example, the position



eigenket of a spin-zero boson will be labeled by three numbers x, y, and z. For
fermions, which have spin at least equal to #/2, the states will be labeled by the
orientation of the spin as well as the orbital labels that describe spinless bosons.}
We shall consider just spin-% particles, for which this label can take only two values,
call them + and — or spin up and down (the meaning of these terms will be clear
later). If we denote by @ all the orbital labels and by s the spin label, the state vector
of the fermion that is antisymmetric under the exchange of the particles, i.c., under
the exchange of all the labels, will be of the form

|0181, W82, A) =151, ©252) — | 0282, W151) (10.3.7)
We see that the state vector vanishes if
01=0; and 51=52 (10.3.8)

Thus we find once again that two fermions cannot be in the same quantum state,
but we mean by a quantum state a state of definite ® and s. Thus two electrons can
be in the same orbital state if their spin orientations are different.

We now turn to the second way of finding the statistics of a given species of
particles, the method that works in one or three dimensions, because it appeals to a
simple experiment which determines whether the two-particle state vector is symmet-
ric or antisymmetric for the given species. As a prelude to the discussion of such an
experiment, let us study in some detail the Hilbert space of bosons and fermions.

Bosonic and Fermionic Hilbert Spaces

We have seen that two identical bosons will always have symmetric state vectors
and two identical fermions will always have antisymmetric state vectors. Let us call
the Hilbert space of symmetric bosonic vectors Vs and the Hilbert space of the
antisymmetric fermionic vectors V4. We first examine the relation between these
two spaces on the one hand and the direct product space V,g» on the other.

The space V&, consists of all vectors of the form |@,0,)=|0,>R|w>>. To
each pair of vectors |@, =4, @, =5b) and |@, =b, @, = a) there is one (unnormalized)
bosonic vector |@,=a, w,=b)+|w,=b, w,=a) and one fermionic vector |@,=
a, 0,=b)—|wi1=a, w>=>b). If a=b; the vector |@, =a, w,=a) is already symmetric
and we may take it to be the bosonic vector. There is no corresponding fermionic
vector (the Pauli principle). Thus Vg, has just enough basis vectors to form one
bosonic Hilbert space and one fermionic Hilbert space. We express this relation as

V]®2=VS@\/A (1039)

1 Since spin has no classical counterpart, the operator representing it is not a function of the coordinate
and momentum operators and it commutes with any orbital operator Q. Thus spin may be specified
simultaneously with the orbital variables.
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with Vg getting slightly more than half the dimensionality of V,g,.J Our anal
has shown that at any given time, the state of two bosons is an element of Vg
that of two fermions an element of V4. It can also be shown that a system
starts out in Vg(V ) remains in Vs(V4) (see Exercise 10.3.5). Thus in studying
identical particles we need only consider Vs or V4. It is however convenient,
bookkeeping purposes, to view Vs and V4 as subspaces of Vg, and the elem
of Vs or V4 as elements also of Vg;.

Let us now consider the normalization of the vectors in V. Consider first
eigenkets |w,w,, S) corresponding to a variable Q with discrete eigenvalues.
unnormalized state vector is

w05, SY=|w,0,) +|w0,)

Since |0, and |w.m,) are orthonormal states in V&>, the normalization fac
is just 27" ie.,

|14, S>=2"""[|0,0,) +|w,0,)] (10.3.1

is a normalized eigenvector. You may readily check that {(w @, S|0,w,, S)=
The preceding discussion assumes @, # ®,. If ®;=w,=wo the product ket |ow)
itself both symmetric and normalized and we choose

low, S>=low> (10.3.1

Any vector |ys) in Vs may be expanded in terms of this © basis. As usual
identify

Py, @) =|{@10>, Slys)|’ (10.3.1%

as the absolute probability of finding the particles in state |w;®,, S) when
measurement is made on a system in state |ys)>. The normalization condition:
|ws> and Ps(w,, ®;) may be written as

I=C{ydysy=3 [Km0,, S| ysol?

dist

= Z Ps(a)] . (1)2) (103.1

dist

where )’ . denotes a sum over all physically distinct states. If », and > take v
between ®pm;n and ®max, then

@D max @2

y=5y 3 (103.125)

dist ®2=@Omn ®)=Omn

In this manner we avoid counting both |0,0,, S) and |w,w,, S, which are phys-
ically equivalent. Another way is to count them both and then divide by 2.

1 Since every element of V is perpendicular to every element of V 4 (you should check this) the dimension-
ality of V& equals the sum of the dimensionalities of Vg and V.



What if we want the absolute probability density for some continuous variable
such as X7 In this case we must take the projection of |ys) on the normalized
position eigenket:

Ixix2, §Y=2""2[|x132) +|x2x1)] (10.3.13)
to obtain

Ps(x1, x2) = |{x1%2, S wsol® (10.3.14)

The normalization condition for Ps(x;, x2) and |y s> is

dx, d dx, dx>
1=Hps(x.,xz> x12 x2=ﬂ1<x1xz,swzs>|2 x‘z 2 (10.3.15)

where the factor 1/2 makes up for the double counting done by the dx; dx, integra-
tion.} In this case it is convenient to define the wave function as

ws(x1, x2) =272 xxa, Slys) (10.3.16)

so that the normalization of y is
IZJJIWS(xlaXZ)ldel dx, (10.3.17)

However, in this case
Ps(x1, x2) =2|ys(x1, %)\’ (10.3.18)
due to the rescaling. Now, note that

1 1
ws(xi, x2) =5 {xaixa, Slys)y =5 [Cx1xa] ws) + xaxil wsy |

=%l Wsy (10.3.19)

where we have exploited the fact that | ys) is symmetrized between the particles and
has the same inner product with (x;x,| and {x2xi|. Consequently, the normalization

} The points x; =x, = x pose some subtle questions both with respect to the factor 1/2 and the normaliza-
tion of the kets |xx, §>. We do not get into these since the points on the line x) =x,=x make only an
infinitesimal contribution to the integration in the x, — X, plane (of any smooth function). In the follow-
ing discussion you may assume that quantities such as Ps(x, x), ys(x, x) are all given by the limits

x-Xa—x of Ps(x1, X2), ys(x1, X2), etc.
®
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I={yslys)= J\J\| V’S|2 dx, dx2=‘[ {ys|xix, ) {x1xy| Vs dxy dx;

which makes sense, as |ys) is an element of V, g, as well. Note, however, that
kets | x1x, ) enter the definition of the wave function Eq. (10.3.19), and the norm
tion integral above, only as bookkeeping devices. They are not elements of Vg
the inner product {x;x,|y ) would be of no interest to us, were it not for the
that the quantity that is of physical interest {x;x,, S|y s>, is related to it by j
scale factor of 2'/%. Let us now consider a concrete example. We measure the energ
of two noninteracting bosons in a box extending from x=0 to x=L and find them
to be in the quantum states n=3 and n=4. The normalized state vector just after
measurement is then

3,4>+|4,3
st>=———| >21/2| 2 (10.3.20

in obvious notation. The wave function is

ws(x1, x2) =272xx0, Slys)
1 3,4>+14,3
=5 (X132 + <x2x1|)<l—22’1/7|—>)

1
=m [{x1%2]3, 4> + (aixal4, 3> + (xaxy| 3, 45 + (x4, 3)]

) ﬁ lys(xDya(x2) + walx) ya(xo) + ya(x2) ya(x)

+ ya(x2)wa(x)]
=2—1/2[W3(x1)w4(_x2) + l[/4(X1)W3(-x2)]

=% Yy (10.3.21a)

where in all of the above, d
2 12 nmx

a(X) =\ in| — 10.3.21b

Wa(x) (L) sm( I3 ) ( )

These considerations apply with obvious modifications to the fermionic space
V 4. The basis vectors are of the form

|01@2, A>=2""|0,02> — | 020, ] (10.3.22)



(The case @,= @, does not arise here.) The wave function is once again

Walx1, x2) =2_]/2<x,x2, Al 4>
=Xl W) (10.3.23)

and as in the bosonic case
Pa(x1, x2)=2|wa(x1, x)|° (10.3.24)

The normalization condition is

dxd
1=UP,,(x,,x2) x‘z xz:”w,,(xl,xz)ﬁdx, dx, (10.3.25)

Returning to our example of two particles in a box, if we had obtained the
values n=3 and n=4, then the state just after measurement would have been

3,4>—14,3
|w>=———' >2,/21 2 (10.3.26)
(We may equally well choose
14,35—13,4
=22 TR

which makes no physical difference). The corresponding wave function may be
written in the form of a determinant:

WXy, %) = <x1al Y a) =27 2[5 (1) Walx2) = Walx)) ya(x2)]
i =971/2 ya(x1)  yalx) (10.3.27)
, Wi(x2)  Yalx2)
Had we been considering the state | w,, 4> [Eq. (10.3.22)],1
WA(X], x2)=2—]/2 le()ﬁ) sz(-xl) (10.328)
le('xZ) sz(-xZ)

Determination of Particle Statistics

We are finally ready to answer the old question: how does one determine empir-
ically the statistics of a given species, i.e., whether it is a boson or fermion, without
turning to the spin statistics theorem? For concreteness, let us say we have two
identical noninteracting pions and wish to find out if they are bosons or fermions.

} The determinantal form of y, makes it clear that w4 vanishes if x;=x, or @, = @,.
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We proceed as follows. We put them in a one-dimensional box{ and make an
measurement. Say we find one in the state n=13 and the other in the state n=4,
probability distribution in x space would be, depending on their statistics,

Py 4(x), x2) = 2| Vsa{xy, x2)|2
=227 [ys(x) ya(x2) = ya(x)wa(x)])?
= y3(x) | wa(x)l* + [ alxD) | ya(x) ) :
£ [YF ) wa(x) i) ya(x) + wi(x)ys(x) wi () walx2)] (10.

Compare this situation with two particles carrying labels 1 and 2, but othe
identical,§ with particle 1 in state 3 and described by a probability distrib
lws(x)|%, and particle 2 in state 4 and described by the probability distriby
[wa(x)|”. In this case, the first term represents the probability that particle 1 is
and particle 2 is at x,, while the second gives the probability for the exch
event. The sum of these two terms then gives Pp(x1, x,), the probability for
one at x; and the other at x,, with no regard paid to their labels. (The subscri
denotes distinguishable.) The next two terms, called interference terms, remind
that there is more to identical particles in quantum theory than just their iden
characteristics: they have no separate identities. Had they separate identities (
the classical case) and we were just indifferent to which one arrives at x; and w
one at x,, we would get just the first two terms. There is a parallel between
situation and the double-slit experiment, where the probabilities for finding a
at a given point x on the screen with both slits open was not the sum of the probal
ies with either slit open. In both cases, the interference terms arise, because in g
tum theory, when an event can take place in two (or more) indistinguishable
we add the corresponding amplitudes and not the corresponding probabilities.

Just as we were not allowed then to assign a definite trajectory to the pa
(through slits 1 or 2), we are not allowed now to assign definite labels to the
particles.

The interference terms tell us if the pions are bosons or fermions. The diffe
between the two cases is most dramatic as x; —>x,—Xx:

P 4(x1-x, x,—x)—0 (Pauli principle applied to state | x}) (10,
whereas
Ps(x1—x, x,—x) = 2[| y3(0) | wa ()| + | wa() Yl wa(0)”] (1
which is twice as big as Pp(x1—Xx, x,—x), the probability density for two di
label carrying (but otherwise identical) particles, whose labels are disregarded in the
position measurement.
One refers to the tendency of fermions to avoid each other (i.e., avoid the

state x, =x,=x) as obeying “Fermi-Dirac statistics’ and the tendency of bosons to

1 We do this to simplify the argument. The basic idea works just as well in three dimensions.
§ The label can, for example, be the electric charge.
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nglomerate as “obeying Bose-Einstein statistics,” after the physicists who first
lored the consequences of the antisymmetrization and symmetrization require-
pents on the statistical mechanics of an ensemble of fermions and bosons, respec-
ely. (This is the reason for referring to the bosonic/fermionic nature of a particle
hs its statistics.)
Given the striking difference in the two distributions, we can readily imagine
eciding (once and for all) whether pions are bosons or fermions by preparing an
semble of systems (with particles in n=3 and 4) and measuring P(x;, x3).
Note that P(x;, x,) helps us decide not only whether the particles are bosons
r fermions, but also whether they are identical in the first place. In other words, if
particles that we think are identical differ with respect to some label that we are not
aware of, the nature of the interference term will betray this fact. Imagine, for
example, two bosons, call them K and K, which are identical with respect to mass
and charge, but different with respect to a quantum number called “hypercharge.”
Let us assume we are ignorant of hypercharge. In preparing an ensemble that we
think contains N identical pairs, we will actually be including some (X, K) pairs,
some (K, K) pairs. If we now make measurements on the ensemble and extract
the distribution P(x;, x;) (once again ignoring the hypercharge), we will find the
interference term has the + sign but is not as big as it should be. If the ensemble
contained only identical bosons, P(x, x) should be twice as big as Pp(x, x), which
describes label-carrying particles; if we get a ratio less than 2, we know the ensemble
is contaminated by label-carrying particles which produce no interference terms.
From the above discussions, it is also clear that one cannot hastily conclude,
upon catching two electrons in the same orbital state in three dimensions that they
are not fermions. In this case, the label we are ignoring is the spin orientation s. As
mentioned earlier on, s can have only two values, call them + and —. If we assume
that s never changes (during the course of the experiment) it can serve as a particle
label that survives with time. If s=+ for one electron and — for the other, they are
like two distinct particles and can be in the same orbital state. The safe thing to do
here is once again to work with an ensemble rather than an isolated measurement.
Since we are ignorant of spin, our ensemble will contain (+, +) pairs, (—, —) pairs,
d (+, —) pairs. The (+, +) and (—, —) pairs are identical fermions and will produce
negative interference term, while the (+, —) pairs will not. Thus we will find P(r, r)
smaller than Pp(r, r) describing labeled particles, but not zero. This will tell us
t our ensemble has identical fermion pairs contaminated by pairs of distin-
ishable particles. It will then be up to us to find the nature of the hidden degree
f freedom which provides the distinction.

ystems of NV Identical Particles

The case N=2 lacks one feature that is found at larger N. We illustrate it by
considering the case of three identical particles in a box. Let us say that an energy
measurement shows the quantum numbers of the particles to be n,, #n,, and n3. Since
the particles are identical, all we can conclude from this observation is that the total

W’
E= (m) (nf + n% + n%)
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Now there are 3!=six product states with this energy: |nin.ns», |minsng), |mnsm).
|naminsy, |nsnanyy, and |nsmin,)>. The physical states are elements of the six-dimen-
sional eigenspace spanned by these vectors and distinguished by the property tha
under the exchange of any two particle labels, the state vector changes only bya
factor a. Since double exchange of the same two labels is equivalent to no exchang,
we conclude as before that @ =+1. There are only two states with this property:

1
|mnons, S =(_3'_)17§ [lminons) + [mnsng ) + nonsng )

+|namns) + |nsngng ) + | naning) | (108

called the totally symmetric state,{ for which a = +1 for all three possible exchanges
(12,23, 13);and

|mnynz, A= [lmnons) — |nnsng > + |nansng )

1
(3n'?
= |nayns) + |nsnng) — [nsnon, | (10333

called the totally antisymmetric state, for which a=-—1 for all three possibl
exchanges.

Bosons will always pick the S states and fermions, the A4 states. It follows that
no two fermions can be in the same state.

As in the N=2 case, the wave function in the X basis is .

V/S/A(X1 » X2, X3) = (3!)_1/2(x1x2x3 s STA|lWssa) = (X124 Ws/a) (10.3.34)

and

J j j | Wsyal® dxi dxy dxs =1

For instance, the wave function associated with [nn.n;, S/4>, Eqgs. (10.3.33) and
(10.3.34), is

Wiy (X1, X2, X3, S/A4)
= (3D 7Y (X)) Wn(X2) Wins(X3) £ W (X1) Wiy (X2) Wiy (X3)
+ Y00 Wa(X2) Wy (63) & W (1) Wi (X2) W)
+ W (X)W (X2) Yro(X3) £ Yo (X)W (62) Wi, (X3)] (103.39)

1 The normalization factor (3t)~"/ % is correct only if all three »’s are different. If, for example, n,=n=

n;=n, then the product state |nnn) is normalized and symmetric and can be used as the S state, A
similar question does not arise for the fermion state due to the Pauli principle. .



The fermion wave function may once again be written as a determinant:

Wnl(xl) an(xl) Wna(xl)
Wonnn{ X1, X2, X3, A) =W Wn(X2)  Wn(X2)  Win(X2) (10.3.36)
’ Wnl(x3) an(XS) Wn3(x3)

Using the properties of the determinant, one easily sees that y vanishes if two of
the x’s or »’s coincide. All these results generalize directly to any higher N.
Two questions may bother you at this point.

Question I. Consider the case N=3. There are three possible exchanges here:
(12), (1 &3), and (2 < 3). The S states pick up a factor a=+1 for all three
exchanges, while the 4 states pick up a =—1 for all three exchanges. What about
states for which some of the a’s are +1 and the others —1? Such states do not exist.
You may verify this by exhaustion: take the 3! product vectors and try to form such
a linear combination. Since a general proof for this case and all N involves group
theory, we will not discuss it here. Note that since we get only two acceptable
vectors for every N! product vectors, the direct product space for N >3 is bigger (in
dimensionality) than Vs®V 4.

Question II. We have tacitly assumed that if two identical particles of a given
species always pick the S (or 4) state, so will three or more, i.e., we have extended
our definition of bosons and fermions from N=2 to all N. What if two pions always
pick the S state while three always pick the 4 state? While intuition revolts at such
a possibility, it still needs to be formally ruled out. We do so at the end of the next
subsection.

When Can We Ignore Symmetrization and Antisymmetrization?

A basic assumption physicists make before they can make any headway is that
they can single out some part of the universe (the system) and study it in isolation
from the rest. While no system is truly isolated, one can often get close to this ideal.
For instance, when we study the oscillations of a mass coupled to a spring, we ignore
the gravitational pull of Pluto.

Classically, the isolation of the system is expressed by the separability of the
Hamiltonian of the universe:

*‘ v”imiverse = v”;ys + r”;est (10337)

where #y is a function of the system coordinates and momenta alone. It follows
that the time evolution of the system’s p’s and ¢’s are independent of what is going
on in the rest of the universe. In our example, this separability is ruined (to give just
one example) by the gravitational interaction between the mass and Pluto, which
depends on their relative separation. If we neglect this absurdly small effect (and
other such effects) we obtain separability to an excellent approximation.
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Quantum mechanically, separability of H leads to the factorization of the wav
function of the universe:

Vuniverse = Wsys © Yrest (10338}

where . is a function only of system coordinates, collectively referred to as x
Thus if we want the probability that the system has a certain coordinate x,, and
not care about the rest, we find (symbolically)

P(xs) = JI Wuniverse(xs, xrest)l 2 dxrest

= l Wsys(xs)(z j[ W(xrest)‘z dxrest 4

= Weys(X5)]? (10.3.

We could have obtained this result by simply ignoring ., from the outset.

Things get complicated when the system and the “rest” contain identical parti
cles. Even if there is no interaction between the system and the rest, i.e., the H
tonian is separable, product states are not allowed and only S or A states must
used. Once the state vector fails to factorize, we will no longer have

P(x;, Xrest) = P(x) P(Xrest) (10.3.

(i.e., the systems will not be statistically independent), and we can not integrate
P(x.est) and regain P(x,).

Now it seems reasonable that at least in certain cases it should be possible
get away with the product state and ignore the symmetrization or antisymmetrizati
conditions.

Suppose, for example, that at t=0, we find one pion in the ground state of
oscillator potential centered around a point on earth and another pion in the sa
state, but on the moon. It seems reasonable that we can give the particles the la
“earth pion” and “moon pion,” which will survive with time. Although we ¢
follow their trajectories, we can follow their wave functions: we know the first w
function is a Gaussian Gz(xz) centered at a point in the lab on earth and that
second is a Gaussian G(x,,) centered at a point on the moon. If we catch a pi
somewhere on earth at time ¢, the theory tells us that it is almost certainly the *
pion” and that the chances of its being the “moon pion” are absurdly small.
the uncertainty in the position of each pion is compensated by a separation thaf
much larger. (Even in classical mechanics, it is not necessary to know the trajecto
exactly to follow the particles; the band of uncertainty about each trajectory
merely to be much thinner than the minimum separation between the particles dur
their encounter.) We therefore believe that if we assumed '

4

w(xe, xar) = Ge(xz)Gar(xar) (1034



we should be making an error that is as negligible as is the chance of finding the
earth pion on the moon and vice versa. Given this product form, the person on earth
can compute the probability for finding the earth pion at some x by integrating out
the moon pion:

P(xz)=|Ge(xe)l® J‘IGM(XM)I2 dxm
=|Gel(xe)\ (10.3.42)

Likewise the person on the moon, who does not care about (i.e., sums over) the
earth pion will obtain

i P(x3) =|Gaelxna) I (10.3.43)

Let us now verify that if we took a properly symmetrized wave function it leads
to essentially the same predictions (with negligible differences).
Let us start with

V/s(xl . Xz) = 2_1/2[GE(X|)GM(X2) + GM(Xl)GE()Cz)] (10344)

We use the labels x; and x, rather than xz and X to emphasize that the pions are
indeed being treated as indistinguishable. Now, the probability (density) of finding
one particle near x; and one near x; is

P(x1, x2)=2| V/lz = |GE(X1)|2| GM(Xz)|2 + |GM(X1)|2I GE(x2)|2
+ GE(XI)GM(XI)GITI(XZ)GE(XZ)
+ G 3(x1)Ge(x1)G E(x2) Gul(x2) (10.3.45)
Let us ask for the probability of finding one particle near some point xz on the
earth, with no regard to the other. This is given by setting either one of the variables

(say x,) equal to xg and integrating out the other [since P(x1, x2) = P(x2, x1)]. There
is no need to divide by 2 in doing this integration (why?). We get

P(xz)=1Ge(xE)|? leM(XZ)IZ dx,+|Gulxp)? J|GE(x2)|2 dx,
+ GE(XE)GM(XE) jGL(XZ)GE(XZ) de
+Gi(xe)Ge(xE) jGE(Xz)GM(Xz) dx, (10.3.46)

The first term is what we would get if we begin with a product wave function Eqg.
(10.3.41) and integrate out x,,. The other three terms are negligible since G is

peaked on the moon and is utterly negligible at a point xg on the earth. Similarly if
we asked for P(x,,), where x,, is a point on the moon, we will again get |Gar (X))
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The labels ‘“‘earth pion” and “moon pion” were useful only because the
Gaussians remained well separated for all times (being stationary states). If the
Gaussians had not been bound by the oscillating wells, and were wave pac
drifting toward each other, the labeling (and the factorized wave function) wo
have become invalid when the Gaussians begin to have a significant overlap.
point is that at the start of any experiment, one can always assign the particles so
labels. These labels acquire a physical significance only if they survive for some ti
Labels like ““a particle of mass m and charge +1” survive forever, while the longe
of a label like “earth pion” is controlled by whether or not some other pion is
the vicinity.

A dramatic illustration of this point is provided by the following example.
t=0 we catch two pions, one at x=a and the other at x=»b. We can give them
labels a and b since the two delta functions do not overlap even if ¢ and b are in
same room. We may describe the initial state by a product wave function. But
labeling is quite useless, since after the passage of an infinitesimal period of ti
the delta functions spread out completely: the probability distributions become
stants. You may verify this by examining |U(x, ¢; a, 0)]* (the “fate” of the de
function)} or by noting that AP= oo for a delta function (the particle has all possi
velocities from 0 to co) and which, therefore, spreads out in no time,

All these considerations apply with no modification to two fermions: the
cases differ in the sign of the interference term, which is irrelevant to
considerations.

What if there are three pions, two on earth and one on the moon? Since
two on the earth (assuming that their wave functions appreciably overlap) can
confused with each other, we must symmetrize between them, and the total
function will be, in obvious notation,

W(xEl ’ sz Y xM) = Ws(xEl s xEZ) ) W(XM) (10‘3'

The extension of this result to more particles and to fermions is obvious.

At this point the answer to Question II raised at the end of the last subsec
becomes apparent. Suppose three-pion systems picked the A state while two-pi
systems picked the S state. Let two of the three pions be on earth and the third one
the moon. Then, by assumption, the following function should provide an excell
approximation:

Y(XE s XEy Xa) = W a(XE,, XE)W (Xar) (10.3.
If we integrate over the moon pion we get
P(xg,, X5,) =2| W a(xz,, X,)|? (10.3.49%

We are thus led to conclude that two pions on earth will have a probability distribud
tion corresponding to two fermions if there is a third pion on the moon and
distribution expected to two bosons if there is not a third one on the moon. Suca

11t is being assumed that the particles are free.
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absurd conclusions are averted only if the statistics depend on the species and not
the number of particles.

A word of caution before we conclude this long discussion. If two particles have
nonoverlapping wave functions in x space, then it is only in x space that a product
wave function provides a good approximation to the exact symmetrized wave func-
tion, which in our example was

ws(x1, x2) =27 2[Ge(x)Grr(%2) + Gu(x1) Gr(x2)] (10.3.50)

The formal reason is that for any choice of the arguments x; and x2, only one or
the other of the two terms in the right-hand side is important. (For example, if x
is on the earth and x- is on the moon, only the first piece is important.) Physically
it is because the chance of finding one pion in the territory of the other is negligible
and interference effects can be ignored.

If, however, we wish to switch to another basis, say the P basis, we must consider
the Fourier transform of the symmetric function ys and not the product, so that we
end up with a symmetrized wave function in p space. The physical reason for this is
that the two pions have the same momentum distributions—with (P =0 and ident-
ical Gaussian fluctuations about this mean—since the momentum content of the
oscillator is independent of its location. Consequently, there are no grounds in P
space for distinguishing between them. Thus when a momentum measurement (which
says nothing about the positions) yields two numbers, we cannot assign them to the
pions in a unique way. Formally, symmetrization is important because the p-space
wave functions of the pions overlap strongly and there exist values for the two
momenta (both ~0) for which both terms in the symmetric wave function are
significant.

By the same token, if there are two particles with nonoverlapping wave functions
in p space, we may describe the system by a product wave function in this space
using labels like “fast” and “slow” instead of “earth” and “moon” to distinguish

tween them), but not in another space where the distinction between them is
absent. It should be clear that these arguments apply not just to X or P but to any
arbitrary variable Q.

Exercise 10.3.1.* Two identical bosons are found to be in states |¢) and |y). Write
down the normalized state vector describing the system when {¢|y) #0.

¥ Exercise 10.3.2. * When an energy measurement is made on a system of three bosons in
ox, the n values obtained were 3, 3, and 4. Write down a symmetrized, normalized state
jtor.

Exercise 10.3.3.* Imagine a situation in which there are three particles and only three
tes a, b, and ¢ available to them. Show that the total number of allowed, distinct configura-
jons for this system is

(1) 27 if they are labeled
(2) 10 if they are bosons
. (3) 1 if they are fermions
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Exercise 10.3.4.* Two identical particles of mass m are in a one-dimensional

length L. Energy measurement of the system yields the value E.,=#*r?/mL>. Write do
the state vector of the system. Repeat for E,,=5#n%/2mL*. (There are two possible v
in this case.) You are not told if they are bosons or fermions. You may assume that the

degrees of freedom are orbital.

Exercise 10.3.5.* Consider the exchange operator P;, whose action on the X basis i

Puolxy, x2) =|x2, X1

(1) Show that Py, has eigenvalues +1. (It is Hermitian and unitary.)

(2) Show that its action on the basis ket |®;, ®,) is also to exchange the labels 1

2, and hence that Vg, , are its eigenspaces with eigenvalues £1.

(3) Show that P12X|P12:X2, P|2X2P12:X1 and similarly for PI and Pz. Then show
PYXy, P Xy, P))P1=0(X,, Py; X, Py). [Consider the action on |x,, x,) or | py, p2).
for the functions of X and P, assume they are given by power series and consider any

in the series. If you need help, peek into the discussion leading to Eq. (11.2.22).]

(4) Show that the Hamiltonian and propagator for two identical particles are
unaffected under H— P,,HP,; and U—- P,;UPy,. Given this, show that any eigenstate of

continues to remain an eigenstate with the same eigenvalue as time passes, i.e., elem
Vs, never leave the symmetric or antisymmetric subspaces they start in.

Exercise 10.3.6.* Consider a composite object such as the hydrogen atom. Will it

as a boson or fermion? Argue in general that objects containing an even/odd num

fermions will behave as bosons/fermions.
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Symmetries and
Their Consequences

11.1. Overview

In Chapter 2, we explored the consequences of the symmetries of the Hamil-
tonian. We saw the following:

(1) If £ is invariant under the infinitesimal canonical transformation generated
by a variable g(q, p), then g is conserved.

(2) Any canonical transformation that leaves # invariant maps solutions to
the equations of motion into other solutions. Equivalently, an experiment and its
transformed version will give the same result if the transformation is canonical and
leaves # invariant,

Here we address the corresponding results in quantum mechanics.{

11.2. Translational Invariance in Quantum Theory

Consider a single particle in one dimension. How shall we define translational
invariance? Since a particle in an arbitrary state has neither a well-defined position
nor a well-defined energy, we cannot define translational invariance to be the invari-
ance of the energy under an infinitesimal shift in the particle position. Our previous
experience, however, suggests that in the quantum formulation the expectation values
should play the role of the classical variables. We therefore make the correspondence
shown in Table 11.1.

Having agreed to formulate the problem in terms of expectation values, we still
have two equivalent ways to interpret the transformations:

X>—-<X>+e (11.2.1a)

(PY—=(P> (11.2.1b)

11t may be worth refreshing your memory by going through Sections 2.7 and 2.8.
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Table 11.1. Correspondence between Classical and Quantum Mechanical Concepts Related to
Translational Invariance

Concept Classical mechanics Quantum mechanics
Translation x—x+g Xy—={X)+e
p=p Py LP)
Translational invariance H—>H CHY~(H>
Conservation law p=0 {P»=0 (anticipated)

The first is to say that under the infinitesimal translation, each state |y)
modified into a translated state, |y, such that

Xy =<yl Xly)>+e (112,
vl Ply > =<yl|Ply) (11.2.

In terms of 7€), the translation operator, which translates the state (and which
be constructed explicitly in a while)

T(e)ly>=\y>
Eq. (11.2.2) becomes
WT(DXT()ly> =< wiXly)>+e
WIT ()PT(e) vy =y Ply>
This point of view is called the active transformation picture (in the terminolo,
Section 1.7) and corresponds to physically displacing the particle to the right b

The second point of view is to say that nothing happens to the state vecto
is the operators X and P that get modified by 7(¢) as follows:

X-T'e)XT(¢)
P T'(e)PT(e)
such that A
T'(e)XT(e)=X + ¢l (11(’
T'(e)PT(e)=P (1.2

This is called the passive transformation picture. Physically it corresponds to movi
the environment (the coordinate system, sources of external field if any, etc.) to the
left by &.

Physically, the equivalence of the active and passive pictures is due to the fact
that moving the particle one way is equivalent to moving the environment the other
way by an equal amount.



Mathematically, we show the equivalence as follows. If we sandwich the operator 281

equation (11.2.5) between {y| and |y, we get Eq. (11.2.4). To go the other way, SYMMETRIES
we first rewrite Eq. (11.2.4) as AND THEIR
CONSEQUENCES

WIT(&XT(e)—X— elly>=0
(Yl T (&)PT(8) = Plyy=0

We now reason as follows:

(1) The operators being sandwiched are Hermitian (verify).

(2) Since |w) is arbitrary, we can choose it to be any of the eigenvectors of
these operators. It follows that all the eigenvalues vanish.

(3) The operators themselves vanish, implying Eq. (11.2.5).

In what follows, we will examine both pictures. We will find that it is possible
to construct 7T(&) given either of Egs. (11.2.4) or (11.2.5), and of course that the
two yield the same result. The active transformation picture is nice in that we work
with the quantum state |y, which now plays the role of the classical state (x, p).
The passive transformation picture is nice because the response of the quantum
operators X and P to a translation is formally similar to that of their classical
counterparts.f

We begin by discussing translations in terms of active transformations. Let us
examine how the ket | . is related to | ) or, equivalently, the action of the Hilbert
space operator T(¢g). The answer appears obvious if we work with kets of definite
position, |x). In this case it is clear that

] T(e)lx>=|x+ &) (11.2.6)
In other words, if the particle is originally at x, it must end up at x+ &. Notice that
T{(e) is unitary; it acts on an orthonormal basis | x), —oo <x < c0, and gives another,

|[x+¢&)>, —0 <x+ e<00. Once the action of T(£) on a complete basis is known, its
action on any ket |y ) follows:

lt/fg>=T(8)l!/f>=T(8)J [x)<xly ) a’x=f [+ ex<xly) dx

=j | X' >{x'~ gy dx (xX=x+¢) (11.2.7)
In other words if
Xy =y(x)

 As we shall see, it is this point of view that best exposes many formal relations between classical and
guantum mechanics.
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then

XT(e)|yy=w(x—¢) i (11.28

For example, if w(x)~e¢™ is a Gaussian peaked at the orig
w(x— &) ~e " is an identical Gaussian peaked at x=¢. Thus the wave functio
v .(x) is obtained by translating (without distortion) the wave function y(x) by
amount ¢ to the right. You may verify that the action of 7(¢) defined by Eq. (11.2.§
satisfies the condition Eq. (11.2.1a). How about the condition Eq. (11.2.1b)? Iti
automatically satisfied:

f* oo d
ydPly>= wl‘(x)(— i d—) v o(x) dx
J_ o X

f* o0

= w*(x—s)(—iﬁ i)w(x—s) dx

v_n dx

(= ,

= v (x") (— if —) w(x') dx' (xX'=x—¢)
dx’

LY

—o0

=<yl Ply> (112

Now there is something odd here. Classically, translation is specified by twe
independent relanions

x—=x+e

p—p

while in the quantum version we seem to find that in enforcing the former (on position
eigenkets), the latter automatically follows. The reason is that in our derivation we
have assumed more than what was explicitly stated. We reasoned earlier, on physical
grounds, that since a particle initially located at x must end up at x + &, it follows
that

T(e)|x>=|x+¢)

While our intuition was cotrect, our implementation was not. As seen in chapter 7,
the X basis is not unique, and the general result consistent with our intuition is not
Eq. (11.2.6) but rather

T(g)|x) =€ x+ &) (11.2.

(Note that as £—0, T(&){x)>—|x) as it should.) In ignoring g(x), we had essential ‘y
assumed the quantum analog of p—p. Let us see how. If we start with Eq. (11.2.10)



Elstead of Eq. (11.2.6), we find that

Xy——=X+e (11.2.11a)

T(e)

(PY—={Py+ e f(X)) (11.2.11b)

"re f=g. Demanding now that (P>—{P), we climinate f and reduce g to a
armless constant (which can be chosen to be 0).

b Exercise 11.2.1. Verify Eq. (11.2.11b)

Note that there was nothing wrong with our initial choice T)x)>=|x+ g)—it

gas 100 restrictive given just the requirement {<X»—{X>+ ¢, but not so if we also
considered ¢ P>—(P>. This situation reappears when we go to two or three dimen-

F'sions and when we consider rotations. In all those cases we will make the analog of
the naive choice T(&)|x)=|x+ &) to shorten the derivations.

Having defined translations, let us now define translational invariance in the

same spirit. We define it by the requirement

CylH > =<y Hly.> (11.2.12)

To derive the conservation law that goes with the above equation, we must first
nstruct the operator T(&) explicitly. Since £=0 corresponds to no translation, we
may expand T(¢) 10 order € as

T(g)=1—fﬁfG (11.2.13)

The operator G, called the generator of translations, is Hermitian (sce Exercise 11.2.2
for the proof) and is to be determined. The constant (—i/#) is introduced in anticipa-
tion of what is to follow.

Exercise 11.2.2.% Using T'(&)T(¢) =1 to order &, deduce that G'=aG.

We find G by turning to Eq. (11.2.8):
K T(e)ly>=y(x—¢€)

panding both sides to order &, we find

] d
<x|1|w>—% HGlyy= w(x)—d—"’ g
X
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so that
. d
HGlyy=—in Y
dx

Clearly G is the momentum operator,
G=P

and
T(g)=1—%P (112,

We see that exactly as in classical mechanics, the momentum is the generator
(infinitesimal) translations. ‘

The momentum conservation law now follows from translational invariang
Eq. (11.2.12), if we combine it with Eq. (11.2.14):

(wiHVy =<y JHly )
=(T(e)y|H|T(e)y)>=<y|T (e)HI ()| y)

ie ig
=yl (1+; P)H(I—; P)} wd
=<w1H|w>+5§<w1[P, Hlly)+ ()

so that, we get, upon equating the coefficient of & to zero, 1
yllP, H]ly>=0 (11.2.4
It now follows from Ehrenfest’s theorem that

P, HI>=0-<P>=0 (11.2.1¢

Translation in Terms of Passive Transformations

Let us rederive T(¢g), given that it acts as follows on X and P:
T'"(e)XT(e)=X+ ¢l (11.2.

T'(&)PT(¢)=P (11.2.

The operator T'(£)XT(¢) is also a position operator, but it measures positi
from a new origin, shifted to the left by &: This is the meaning of Eq. (11.2.17



Equation (11.2.17b) states that under the shift in the origin, the momentum is

unaffected.
Writing once again

ieG
T(g)=I-—"
(e) P

we find from Eq. (11.2.17a) (using the fact that G'=G)

(1+'—8—G>X(1—ff§)=x+ el
% 7

or

—%[X, Gl=¢l

‘ [X,G)=ifl

This allows us to conclude that
G=P+f(X)

If we now turn to Eq. (11.2.17b) we find
ig
-—{P,G]=0
7 | I

or
[P, G]=0
which eliminates f(X).1 So once again

ieP
T(e)=1———
(&) P

(11.2.18a)

(11.2.18b)

(11.2.19)

(11.2.202)

(11.2.20b)

Having derived the translation operator in the passive transformation picture, let us

reexamine the notion of translational invariance.

We define translational invariance by the requirement

T'(e)HT(e)=H

(11.2.21)

1 For the purists, it reduces f'to a ¢ number which commutes with X and P, which we choose to be zero.
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We can rewrite Eq. (11.2.21) in a form that is closer to the classical definition
of translational invariance. But first we need the following result: for any Q(X, P
that can be expanded in a power series, and for any unitary operator U,

U'Qx, HU=QU'XU, U'PU)

For the proof, consider a typical term in the series such as PX”P. We have, using
uU'=1,

U'px’PU=U'PUUXUU'XUU'PU  QED.

Applying this result to the case U=T(g) we get the response of any dynamical
variable to a translation:

QX, P)->T'QX, PAT=(T'XT, T'PT)=Q(X + I, P) (1122

Thus the transformed Q is found by replacing X by X+ &/ and P by P. If we now
apply this to Eq. (11.2.21) we get the following definition of translation invariance:

H(X +¢el, P)=H(X, P) (11.2.23)
Not only does this condition have the same form as its classical counterpart

H(x+5,p) = H(x, ) |

but it is also satisfied whenever the classical counterpart is. The reason is simply that
H is the same function of X and P as # is of x and p, and both sets of variables
undergo identical changes in a translation.

The conservation of momentum follows if we write T(¢g) in Eq. (11.2.21) in
terms of P and expand things out to first order in &:

0=T"(e)HT(¢)— H=(I+icP/RH(I—icP/h)— H

=11 P (112,
/] ;
which implies that (P> =0, because of the Ehrenfest’s theorem.

A Digression on the Analogy with Classical Mechanics

The passive transformation picture has the virtue that it bears a close formal
resemblance to classical mechanics, with operators Q in place of the classical variables

1 In a less advanced course, the reader may skip this digression. '



o [Egs. (11.2.17), (11.2.22), (11.2.23)]. In fact, the infinitesimal unitary transforma-
tion T(¢) generated by P is the quantum image of the infinitesimal canonical trans-
formation generated by p: if we define the changes 6.X and OP by

SX=T(e)XT(e)— X
SP=T'(&)PT(g)—P

we get, on the one hand, from Eq. (11.2.17),
6X=X+el—-X=¢l
oP=P—P=0
and on the other, from T'=I—ieP/# (working to first order in &),
5X=(I+icP/H)X(I—icP/H) —X=_—h"E X, P|

§P=(I+igP/K)P(I—icP/H)— P=_7ig [P, P]

cbmbining which we obtain
5X=—[X, Pl=¢l
/]
sp=—51P, P]=0
/]
More generally, upon combining, Eq. (11.2.22) and T=I—ieP/ #, we obtain
6Q=;hlf [Q, P]=Q(X + &I, P)— Q(X, P)
These are the analogs of the canonical transformation generated by p:

dx=¢e{x,pl=¢

op=¢e{p,p;=0
So=c{w,p}=w(x+eg p)—o(x,p)

If the problem is translationally invariant, we have

6H=_7hg [H, Pl|=0—(P>=0 by Ehrenfest’s theorem
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while classically
OH =¢e{H,p}=0-p=0 byp={p, #}

The correspondence is achieved through the substitution rules already familiar
us:

Qoo

:ﬁf[Q, Al o {w, A}

In general, the infinitesimal canonical transformation generated by g(x, p),
dw=c¢{o,g}

has as its image in quantum theory the infinitesimal unitary transformation Ug(é)
I—ieG/# in response to which

6Q=_Tlg[Q,G]

Now, we have seen that the transformation generated by any g{x, p) is canoni
i.e., it preserves the PB between the x’s and the p’s. In the quantum theory,
quantities preserved are the commutation relations between the X's and the P’s, fi
if

[X:, P1=ifio ;1

then upon premultiplying by the unitary operator Uk(g) and postmultiplying
Uq(¢), we find that the transformed operators obey]

[U'x,U, U'P, U =id,1

This completes the proof of the correspondence

infinitesimal canonical infinitesimal unitary
transformation generated § « transformation generated
by g(x, p) by G(X, P)

The correspondence holds for finite transformations as well, for these may be viewed
as a sequence of infinitesimal transformations. !

1 More generally if [Q, 8]1=T, then a similar relation holds between the transformed operators v'au.
U'9U, U'TU. This is the quantum version of the result that PB are invariant under canonical

transformation.
o



The correspondence with unitary transformations also holds for regular canon-
ical transformations which have no infinitesimal versions. For instance, in the
coupled oscillator problem, Exercise 10.1.3, we performed a canonical transformation
from x1, X3, p1, P2 to X1, Xu, p1, and pu, where, for example, x;= (x; +x3)/2. In the
quantum theory there will exist a unitary operator such that, for example, U'x,U=
(X;+X2)/2=X; and so on.}

We can see why we can either perform the canonical transformation at the
classical level and then quantize, or first quantize and then perform the unitary
transformation—since the quantum operators respond to the unitary transformation
as do their classical counterparts to the canonical transformation, the end effect will
be the same.§

Let us now return to the problem of translational invariance. Notice that in a
problem with translational invariance, Eq. (11.2.24) tells us that we can find the
simultaneous eigenbasis of P and H. (This agrees with our result from Chapter 5,
that the energy eigenstates of a free particle could be chosen to be momentum
cigenstates as well.|) If a system starts out in such an eigenstate, its momentum
eigenvalue remains constant. To prove this, first note that

[P, H]=0-[P, U(t)] =0 (11.2.25)

since the propagator is a function of just H.*
Suppose at t=0 we have a system in an eigenstate of P:

P|p>=plp> (11.2.26)

After time ¢, the state is U(¢)|p)> and we find

PU)py=U()Plpy = U(t)plp> =pU(D)|p> (11.2.27)

In other words, the state at time ¢ is also an eigenstate of P with the same eigenvalue.
For such states with well-defined momentum, the conservation law (P> =1 reduces
to the classical form, p=0.

Finite Translations

What is the operator T(a) corresponding to a finite translation a? We find it by
the following trick. We divide the interval a into N parts of size a/N. As N— oo,

11f the transformation is not regular, we cannot find a unitary transformation in the quantum theory,
since unitary transformations preserve the eigenvalue spectrum.

§ End of digression.

| Note that a single particle whose H is translationally invariant is necessarily free.

* When H is time independent, we know U(t) =exp( — iHt/#). If H= H(?), the result is true if P commutes
with H(z) for all r. (Why?)
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a/N becomes infinitesimal and we know

T(a/N)=I—é—;-[P (11.

Since a translation by a equals N translations by a/N,

T(a)= lim [T(a/N)|N=e """ (11.

by virtue of the formula

N
e = lim (1 _a_x)
N-ow N

We may apply this formula, true for ¢ numbers, to the present problem, since
the only operator in the picture and commutes with everything in sight, i.e., beh
like a ¢ number. Since

—ad/dx
T(a) o€ (11.
we find
dy dvd
Ti = ——a+ —+- 11
XA T(@)y) = y(x) PRy (

which is the full Taylor series for w(x—a) about the point x.

A Consistency Check. A translation by a followed by a translation by b eq
a translation by a +b. This result has nothing to do with quantum mechanics
is true whether you are talking about a quantum system or a sack of potatoes. I{1s
merely a statement about how translations combine in space. Now, we have just
built operators T, which are supposed to translate quantum states. For this interpre-
tation to be consistent, it is necessary that the law of combination of the translation
operators coincide with the law of combination of the translations they represent.
Now, although we presumed this [see Eq. (11.2.29), and the line above it] in the veffi
act of deriving the formula for T(a), let us verify that our result T(a) =exp( —iaP/#)
satisfies

T(a)T(b) = T(a+b)? (11.2.32)
We find that this is indeed so:

T(a)T(b) =& “F/". ¢ P/ = g @t OP/R = T4 + ) (11.2.33)

A Digression on Finite Canonical and Unitary Transformations}

Though it is clear that the correspondence between canonical and unitary trans-
formations, established for the infinitesimal case in earlier discussions, must carry

1 Optional.



over to the finite case, let us nonetheless go through the details. Consider, for definite-
ness, the case of translations. In the quantum theory we have

Q- T (a)QT(a) ="/ Qe "

Using the identity
A ta 1 1
eBe' =B+ (B, 4]+ [[B AL A+ -
we find
—i 1, (=i
Q—+Q+a(7>[Q, P]+§a2(—ﬁl) ([, P}, P]+- - - (11.2.34)

For example, if we set Q =X7 we get X’ —(X +al)>.
In the classical case, under an infinitesimal displacement da,

do=da{w,p}
or
do
oo

pplying the above result to the variable dw/da, we get

d
-, (deo/da) =d’w /da’ = {do/da, p} = {{0, p}, p)

Ind so on. The response of @ to the finite translation is given by the Taylor series
out the point a=0:

2

o-o+a{e,p} +% {{o,p},p}+ - (11.2.35)

hich we see is in correspondence with Eq. (11.2.34) if we make the usual
bstitutions.

Exercise 11.2.3.* Recall that we found the finite rotation transformation from the infinite-

imal one, by solving differential equations (Section 2.8). Verify that if, instead, you relate
the transformed coordinates ¥ and y to x and y by the infinite string of Poisson brackets, you
the same result, ¥=x cos 0 —y sin 0, etc. (Recall the series for sin 6, etc.)
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System of Particles

We will not belabor the extension of the preceding ideas to a system of §

particles. Starting with the analog of Eq. (11.2.8),
{x1, .. xXMTENY>=w(x1—¢€,...,xn—€)
we find, on expanding both sides to order g, that

N

ig 0
Xiyeo s XNI=—Plyd=w(x1,...,XN)— 3, s—w
/] =1 0x;

from which it follows that

ie ¥ ic
T(e)=I-—7Y P/=1-—P
(e)=I-—% P

i=1
where P is the total momentum operator. You may verify that

T &)X, T(e)=X,+ el
T'(e)P, T(e)=P;,, i=1,...,N

Translational invariance means in this case (suppressing indices),

H(X, P)=T"(e)H(X, P)T(¢) = H(X + €¢I, P)

]
(1123

(11.2.40)

Whereas in the single-particle cases this implied the particle was free, here it merely

requires that H (or rather V) be a function of the coordinate differences. Any system

whose parts interact with each other, but nothing external, will have this property.
There are some profound consequences of translational invariance besi

momentum conservation. We take these up next.

Implications of Translational Invariances

Consider a system with translational invariance. Premultiplying both side

Eq. (11.2.21) with T and using its unitarity, we get

(T(a), H]=0



TTOITT)S U T ()l (0D = T(a)U(t) [y (0
=

’
, ’

Figure 11.1. A symbolic depiction of N'(O)?/ T(a)l\P(O)}/,/

translational invariance. The states / J/
are represented schematically by

wave functions. :[ x
[———————— @

It follows that

[T(a), Ut)]=0 or T(@)U(t)=U)T(a) (11.2.41)

The consequence of this relation is illustrated by the following example (Fig. 11.1).
At t=0 two observers 4 and B prepare identical systems at x=0 and x=a, respec-
tively. If | (0)) is the state vector of the system prepared by A, then T(a)| w(0)) is
the state vector of the system prepared by B. The two systems look identical to the
observers who prepared them. After time ¢, the state vectors evolve into U(f){w(0))
and U()T(a)lw(0)>. Using Eq. (11.2.41) the latter may be rewritten as
T(a)U(1)| w(0)), which is just the translated version of 4’s system at time ¢. Therefore
the two systems, which differed only by a translation at =0, differ only by the same
translation at future times. In other words, the time evolution of each system appears
the same to the observer who prepared it. Translational invariance of H implies that
the same experiment repeated at two different places will give the same result (as
seen by the local observers). We have already seen this result in the classical frame-
work. We pursue it further now.

Now it turns out that every known interaction—gravitational, weak, electromag-
netic, and strong (e.g., nuclear)—is translationally invariant, in that every experi-
ment, if repeated at a new site, will give the same result. Consider the following
illustrative example, which clarifies the meaning of this remark. A hydrogen atom
is placed between the plates of a charged condenser. The Hamiltonian is

=|P1|2+|P2|2+ ee;

H
2m1 2m2 |R1 —Rzl

+e V(R + e V(R,) (11.2.42)

¥

where the subscripts 1 and 2 refer to the electron and the proton and V(R){ to the
potential due to the plates. Now this problem has no translation invariance, i.e.,

H(R] +£, Pl, R2+£, Pz)#H(Rl, Pl; Rz, Pz)

which in turn means that if the atom alone is translated (away from the condenser)
it will behave differently. But this does not correspond to repeating the same experi-
ment and getting a different result, since the condenser, which materially affects the

I Remember that R is the operator corresponding to the classical variable r.

293

SYMMETRIES
AND THEIR
CONSEQUENCES



294
CHAPTER 11

dynamics, is left behind. To incorporate it in what is translated, we redefine ow
system to include the (N) charges on the condenser and write

N+2 Pl 1N+2N+2 ;
H= zl I’ DAY L (11243
i=1 mi i=1 j;éz IR RI

Now the charges on the condenser enter H, not via the external field which breaks
translational invariance, but through the Coulomb interaction, which does not. Now
it is true that (dropping indices),

H(R+¢, P)= H(R, P)

which implies that if the atom and the condenser are moved to a new site, the
behavior of the composite system will be unaffected. This result should be vie
not as obvious or self-evident, but rather as a profound statement about the Coulo:
interaction.

The content of the assertion made above is that every known interaction
translational invariance at the fundamental level—if we expand our system to inclu
all degrees of freedom that affect the outcome of an experiment (so that there are
not external fields, only interactions between parts of the system) the total H i
translationally invariant. This is why we apply momentum conservation to eve
problem whatever be the underlying interaction. The translational invariance of
natural laws reflects the uniformity or homogeneity of space. The fact that the
dynamics of an isolated} system (the condenser plus atom in our example) depends
only on where the parts of the system are relative to each other and not on where
the system is as a whole, represents the fact that one part of free space is as good :
as another.

It is translational invariance that allows experimentalists in different parts of
the earth to claim they all did the “same” experiment, and to corroborate, correct,
and complement each other. It is the invariance of the natural laws under translations |
that allows us to describe a hydrogen atom in some distant star as we do one on ;
earth and to apply to its dynamics the quantum mechanical laws deduced on earth. :
We will examine further consequences of translational invariance toward the end of
the next section.

11.3. Time Translational Invariance ‘

Just as the homogeneity of space ensures that the same experiment performed
at two different places gives the same result, homogeneity in time ensures that the

1 To be exact, no system is truly “isolated” except the whole universe (and only its momentum is exactly
conserved). But in practice one draws a line somewhere, between what constitutes the system and what
is irrelevant (for practical purposes) to its evolution. I use the term “isolated” in this practical sense.
The real utility of the concepts of translational invariance and momentum conservation lies in these
approximate situations. Who cares if the universe as a whole is translationally invariant and its momen-
tum is conserved? What matters to me is that I can take my equipment to another town and get the
same results and that the momentum of my system is conserved (to a good accuracy).




same experiment repeated at two different times gives the same result. Let us see
what feature of the Hamiltonian ensures this and what conservation law follows.

Let us prepare at time #, a system in state | o) and let it evolve for an infinitesi-
mal time ¢. The state at time ¢, + ¢, to first order in ¢, will be

Iw(t1+s)>=[1—%H(t1)]le> (11.3.1)

If we repeat the experiment at time #,, beginning with the same initial state, the state
at time #,+ £ will be

lw(t+ 8)>=[1—%H(tz)}w/o> (11.3.2)

The outcome will be the same in both cases if
0=|y(t2+&)>—|y(i+€)

=(_%>[H(t2)—H(t1)]|V/o> (11.3.3)

Since | o) is arbitrary, it follows that
H(t:)=H(t) (11.3.4)

Since 1, and #, are arbitrary, it follows that H is time-independent:

= (11.3.5)

Thus time translational invariance requires that H have no ¢ dependence. Now
Ehrenfest’s theorem for an operator Q that has no time dependence? is

3 i) = 0, HD)

*
Applying it to Q=H in a problem with time translational invariance, we find
KHy=0 (11.3.6)
which is the law of conservation of energy.

LIf d/dr #0 there will be an extra piece i#:{dQ}/dt) on the right-hand side.
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An important simplification that arises if dH/dt=0 is one we have repe
exploited in the past: Schrodinger’s equation ;

L oly)
h—-=H
= ly> (
admits solutions of the form
ly(t)y=|E) e /" (

where the time-independent ket | E ) satisfies
H|E)=E|E) (

The entire dynamics, i.e., the determination of the propagator U(t), boils do
the solution of the time-independent Schrodinger equation (11.3.9).

The considerations that applied to space translation invariance apply h
well. In particular, all known interactions—from gravitational to strong—are
translational invariant, Consequently, if we suitably define the system (to inclu
sources of external fields that affect the experiment) the total H will be independ
t. Consider, for example, a hydrogen atom between the plates of a discharging
denser. If the system includes just the electron and the proton, H will depen
time—it will have the form of Eq. (11.2.42), with V= V(R, ¢). This simply means
repeating the experiment without recharging the condenser, will lead to a dif§
result. If, however, we enlarge the system to include the N charges on the cond
we end up with the H in Eq. (11.2.43), which has no ¢ dependence.

The space-time invariance of natural laws has a profound impact on our g
for understanding nature. The very cycle of physics—of deducing laws from s
phenomena studied at some time and place and then applying them to other phen
ena at a different time and place—rests on the assumption that natural laws
space-time invariant. If nature were not to follow the same rules over space-ti
there would be no rules to find, just a sequence of haphazard events with no th
or reason. By repeating the natural laws over and over through all of space-ti
nature gives tiny earthlings, who probe just a miniscule region of space for a flee
moment (in the cosmic scale), a chance of comprehending the universe at |
Should we at times be despondent over the fact that we know so few of nat
laws, let us find solace in these symmetry principles, which tell us that what little
know is universal and eternal.{

{ The invariance of the laws of nature is not to be confused with our awareness of them, which &
not change with time. For example, Einstein showed that Newtonian mechanics and gravitation {
approximations to relativistic mechanics and gravitation. But this is not to say that the Newton]
scheme worked till Einstein came along. In other words, the relation of Newton’s scheme to Einstej
(as a good approximation in a certain limit) has always been the same, before and after we leamed.



11.4. Parity Invariance

Unlike space-time translations, and rotations, (which we will study in the next
chapter), parity is a discrete transformation. Classically, the parity operation corre-
sponds to reflecting the state of the particle through the origin

— —x
parity (11.4.1)
P
parity

In quantum theory, we define the action of the parity operator on the X basis
as follows

' Ojxy=|-—x) (11.4.2)

in analogy with the classical case. Given this,

Oip>=|-p> (11.4.3)

folfows, as you will see in a moment.
Given the action of TT on a complete (X) basis, its action on an arbitrary ket
follows:

My =11 j |x><{x|y> dx

o0

=j | —x)<{xly) dx

=Jw x> —=xy) dx' (where x'=—x) (11.4.4)
It follows that if
{xjy)=y(x)
xMlyy=y(—x) (11.4.5)

The function y(—x) is the mirror image of w(x) about the origin. Applying Eq.
(11.4.5) to a momentum eigenstate, it will be readily found that IT|p)> =|—p>.
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The eigenvalues of II are just £1. A moment’s “reflection” will prove
Since

x> =|~x>
[xy=|—(—x)>=[x)
Since this is true for an entire basis,
=7 (1
Please note that

(1) O=I1"

(2) The eigenvalues of IT are *1.
(3) II is Hermitian and unitary.
(4) or1™'=M"=II.

The eigenvectors with eigenvalue =1 are said to have even/odd parity. In
basis, where

y(x)— v(—x)

even-parity vectors have even wave functions and odd-parity vectors have odd
functions. The same goes for the P basis since

v(p)— v(-p)

In an arbitrary Q basis, ¥ (@) need not be even or odd even if |y) is a panl
eigenstate (check this). |

Rather than define IT in terms of its action on the kets, we may also define'
through its action on the operators:

nixm=-x
(11,
n'PII=—-P
We say H(X, P) is parity invariant if
N'HX, P\I=H(—X, - P)=H(X, P) (11.

In this case
[, H]=0
and a common eigenbasis of IT and H can be found. In particular, if we consid

just bound states in one dimension (which we saw are nondegenerate), every eigenva
tor of H is necessarily an eigenvector of I1. For example, the oscillator Hamiltonis



satisfies Eq. (11.4.8) and its eigenfunctions have definite parity equal to (—1)", n
being the quantum number of the state. The particle in a box has a parity-invariant
Hamiltonian if the box extends from — L/2 to L/2. In this case the eigenfunctions
have parity (—1)"*", n being the quantum number. If the box extends from 0 to L,
V(x) is not parity invariant and the eigenfunctions

ol
t : Yulx 7 I

have no definite parity. (When x— —x they vanish, since vy, is given by the sine
function only between 0 and L, and vanishes outside.)
If H is parity invariant, then

Ut = UH)TT (11.4.9)

This means that if at t=0 I start with a system in a state |y(0)), and someone
else starts with a system in the parity operated state IT|y(0)), then at a later time
the state of his system will be related to mine by the parity transformation.

Whereas all natural laws are invariant under space-time translations (and rota-
tions) some are not invariant under parity. These are the laws of weak interactions,
which are responsible for nuclear § decay (among other things). This means formally
that the Hamiltonian cannot be made parity invariant by any redefinition of the
system if weak interactions are involved. Physically this means that if two observers
prepare initial states | w(0)> and I} y(0))> which are mirror images of each other,
the final states U(#)| w(0))> and U()II|y(0)> will not be mirror images of each other
(since TTU # UTI).1 Consider the following concrete example of a B decay:

¥Co-*Ni+e +v
;

where ¢ is an electron and v is an antineutrino. Now it turns out that the electron
likes to come flying out in a direction opposite to the spin of ®Co—and this implies
parity noninvariance. Let us see how. At =0 I prepare a system that consists of a
%Co nucleus with its spin up along the z axis (Fig. 11.2) (experiment 4). Although
you are not yet familiar with spin, you may pretend here that ®“Co is spinning in
the sense shown. Let another observer set up another system which is just the mirror
image of mine (experiment B). Let M denote a fictitious experiment, which is what
I see in a mirror in front of me. Notice how the spin S gets reversed under a mirror
reflection. Let the f decay take place. My electron comes out down the z axis. Of
course the mirror also shows an electron coming down the z axis. In the other real/
experiment (B), the dynamics forces the electron to come up the z axis, since the
initial S was down. Thus B starts out as the mirror image of 4 but ends up different.
Consequently, what I see in the mirror (experiment M) does not correspond to what
can happen in real life, i.e., is not a solution to the equations of motion.

{ See Exercise 11.4.4 for a discussion of why the parity transformation is essentially a mirror reflection
in three dimensions.
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Figure 11.2. An example of parity noninvariance. In experiment 4, which I perform, the spit
nucleus points up the z axis. In its actual mirror image, it points down (experiment M). In exp
B, which is a real experiment, the spin is chosen to be down, i.e., B starts out as the mirror ima;
After the decay, the momentum of my electron, p,, is down the z axis. The mirror image of cou
shows the electron coming down. But in the actual experiment B, the dynamics forces the ele
come up the z axis, i.e., antiparallel to the initial nuclear spin S. i

This then is the big difference between parity and other transformations
as space-time translations and rotations. If a certain phenomenon can happ
translated or rotated version can also happen, but not its mirror-reflected ve
if the phenomenon involves weak interactions. In terms of conservation laws,
isolated system starts out in a state of definite parity, it need not end in a st;
same parity if weak interactions are at work. The possibility that weak intera
could be parity noninvariant was discussed in detail by Lee and Yang in 195
confirmed shortly thereafter by the experiments of C. S. Wu and collaborator

Exercise 11.4.1.* Prove that if [[1, H]=0, a system that starts out in a state of ever
parity maintains its parity. (Note that since parity is a discrete operation, it has no asso
conservation law in classical mechanics.)

Exercise 11.4.2.* A particle is in a potential
V(x)=Vosin(2rx/a)

which is invariant under the translations x—x +ma, where m is an integer. Is mom
conserved? Why not?

Exercise 11.4.3.* You are told that in a certain reaction, the electron comes out wi
spin always parallel to its momentum. Argue that parity is violated. ‘

Exercise 11.4.4.* We have treated parity as a mirror reflection. This is certainly tr
one dimension, where x— —x may be viewed as the effect of reflecting through a (p
mirror at the origin. In higher dimensions when we use a plane mirror (say lying on the

1 T. D. Lee and C. N. Yang, Phys. Rev., 104, 254 (1956); C. S. Wu, E. Ambler, R. W. Hayward
R. P. Hudson, Phys. Rev., 105, 1413 (1957).



plane), only one (z) coordinate gets reversed, whereas the parity transformation reverses all
three coordinates.

Verify that reflection on a mirror in the x—y plane is the same as parity followed by
180° rotation about the z axis. Since rotational invariance holds for weak interactions,
noninvariance under mirror reflection implies noninvariance under parity.

E
11.5. Time-Reversal Symmetry

This is a discrete symmetry like parity. Let us first understand what it means in
classical physics. Consider a planet that is on a circular orbit around the sun. At t=
0it starts at =0 and has a velocity in the direction of increasing 6. In other words,
the orbit is running counterclockwise. Let us call the initial position and momentum
x(0), p(0). (We should really be using vectors, but ignore this fact for this discussion.)
We now define the time-reversed state as one in which the position is the same

but the momentum is reversed:

i

3 x(O)=x(1)  p)=—p().

In general, any quantity like position or kinetic energy, which involves an even power
of ¢ in its definition is left invariant and any quantity like momentum or angular
momentum is reversed in sign under the time-reversal operation.

Say that after time T the planet has come to a final state x(7'), p(T') at 0=
/2 after doing a quarter of a revolution. Now Superman (for reasons best known
to him) stops it dead in its tracks, reverses its speed, and lets it go. What will it do?
We know it will retrace its path and at time 27 end up in the time-reversed state of
the initial state:

x(2T)=x(0)  p(2T)=-p(0) (11.5.1)

The above equation defines time-reversal invariance (TRI).

We can describe TRI more graphically as follows. Suppose we take a movie of
the planet from =0 to ¢+=7. At t=T, we start playing the film backward. The
backward motion of the planet will bring it back to the time-reversal initial state at
t=2T. What we see in the movie can really happen, indeed, it was shown how
Superman could make it happen even as you are watching the movie. More generally,
if you see a movie of some planetary motion you will have no way of knowing if
the projector is running forwards or backward. In some movies they get a big laugh
out of the audience by showing cars and people zooming in reverse. As a serious
physics student you should not laugh when you see this since these motions obey
Newton’s laws. In other words, it is perfectly possible for a set of people and cars
to execute this motion. On the other hand, when a cartoon character falling under
gravity suddenly starts clawing his way upwards in thin air using sheer will power,
you may laugh since this is a gross violation of Newton’s laws.

While the correctness of Eq.(11.5.1) is intuitively clear, we will now prove it
with the help of Newton’s Second Law using the fact that it is invariant under r— —¢:
the acceleration is even in time and the potential or force has no reference to ¢. Here
are the detaiis. Just for this discussion let us use a new clock that has its zero at the
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point of time-reversal, so that =0 defines the point when the motion is time-reve
When the movie is run backward we see the trajectory

x{()=x(—1)

In other words, 5 seconds after the reversal, the object is where it was 5 s
before the reversal. The reversal of velocities follows from this:

dx(—t)= _dx(—t)=
dt d(—1

%)=

—X(—1)
and does not have to be additionally encoded. The question is this: Does this

x,(f) obey Newton’s Second Law

d*x,(t)
dr

= F(x,)

given that x(¢) does? We find it does:

d’x(1) d’x(— 1) d’x(—1)
m———==m S =m =
dt dt d(—1)

F(x(— 1) =F(x/(1))

Not all problems are time-reversal invariant. Consider a positively charged par-
ticle in the x-y plane moving under a magnetic field down the z-axis. Let us say it
is released at 1=0 just like the planet, with its velocity in the direction of increasing
0. Due to the v x B force it will go in a counterclockwise orbit. Let us wait till it has
gone around by 7/2 and at this time, =T, time-reverse its state. Will it return to
the time-reserved initial state at t=277 No, it is readily seen that starting from /=
T it will once again go on a counterclockwise circular orbit tangential to the first al
the point of reversal. We blame the magnetic interaction for this failure of TRI: the
force now involves the velocity which is odd under time-reversal.

We now ask how all this appears in quantum mechanics. The ideas will be
illustrated in the simplest context. Let us consider a particle in one dimension with
a time-independent Hamiltonian H. In the x-representation the wave equation is

iﬁgyg?ll=lﬂx)w(nt)

Let us first note that

yoy*

performs time-reversal. This is clear from the fact that the detailed probability distri-
bution in x is unaffected by this change. On the other hand, it is clear from looking
at plane waves (or the momentum operator — i#(3/0x)) that p— — p under complex
conjugation. i



If the system has TRI, we must find the analog of Eq. (11.5.1). So let us prepare
a state y(x, 0), let it evolve for time T, complex conjugate it, let that evolve for
another time T and see if we end up with the complex conjugate of the initial state.
We find the following happens at each stage:

'f/(x; 0)—>€_iH (x)T/ﬁW(x, 0)—>€iH ‘(X)T/ﬁv/*(x’ 0)_}€—iH (x)T/ﬁeiH ‘(x)T/ﬁv/*(x, 0)

It is clear that in order for the end result, which is w(x, 2T"), to obey

y(x,2T)=y*(x, 0)
Nve require that
_. H(x)= H*(x) (11.5.2)

ie., that the Hamiltonian be real. For H=P?/2m+ V(x) this is the case, even in
thigher dimensions. On the other hand, if we have a magnetic field, P enters linearly
and H(x) # H*(x).

If H has TRI, i.e., is real, we have seen at the end of Chapter 6 that every
gigenfunction implies a degenerate one which is its complex conjugate.

! Notice that the failure of TRI in the presence of a magnetic field does not
kepresent any fundamental asymmetry under time-reversal in electrodynamics. The
Jaws of electrodynamics are invariant under {——¢. The asymmetry in our example
jarose due to our treating the magnetic field as external to the system and hence not
Bo be time-reversed. If we had included in our system the currents producing the
jmagnetic field, and reversed them also, the entire system would have followed the
Rime-reversed trajectory. Indeed, if you had taken a movie of the experiment and
played it back, and you could have seen the charges in the wire, you would have
found them running backward, the field would have been reversed at t= T, and the
harge we chose to focus on would have followed the time-reversed trajectory.

| On the other hand, certain experiments together with general arguments from
uantum field theory suggest that there exist interactions in this universe which do
inot have this symmetry at the fundamental level.

There are ways to formulate TRI in a basis-independent way but we will not
ko so here. For most problems where the coordinate basis is the natural choice the
tabove discussion will do. There will be a minor twist when the problem involves
ispin which has no classical counterpart. This can be handled by treating spin as we

v

gvould treat orbital angular momentum.
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Rotational Invariance
and Angular Momentum

In the last chapter on symmetries, rotational invariance was not discussed, not
because it is unimportant, but because it is all too important and deserves a chapter
on its own. The reason is that most of the problems we discuss involve a single
particle (which may be the reduced mass) in an external potential, and whereas
translational invariance of H implies that the particle is free, rotational invariance
of H leaves enough room for interesting dynamics. We first consider two dimensions
and then move on to three.

12.1. Translations in Two Dimensions

Although we are concerned mainly with rotations, let us quickly review transla-
tions in two dimensions. By a straightforward extension of the arguments that led to
Eq. (11.2.14) from Eq. (11.2.13), we may deduce that the generators of infinitesimal
translations along the x and y directions are, respectively,

G,

P,— —ji— (12.1.1)
co?gs)ir;ate ax
.

P———— —ifi— (12.1.2)
coog;islir;ate ay

In terms of the vector operator P, which represents momentum,
P=P,i+P,j (12.1.3)

P, and P, are the dot products of P with the unit vector (i or j) in the direction of
the translation. Since there is nothing special about these two directions, we conclude
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Let us denote the operator that rotates these two-dimensional vectors by R(¢ok). It
is represented by the 2 x 2 matrix in Egs. (12.2.1) and (12.2.2). Just as 7(a) is the
operator in Hilbert space associated with the translation a, let U[R(¢ok)] be the
operator associated with the rotation R(¢,k). In the active transformation picturef

1> — lwz>=ULR] v (12.23)

UIR)

The rotated state | wz) must be such that

{XYr={X ) cos ¢po— (Y ) sin ¢y (12.2.4a)
(Y r=<(X ) sin ¢+ <Y cos ¢ (12.2.4b)
{Pyyr=<{Py) cos ¢py— <P, sin ¢o (12.2.53)
{P,>r=<Py) sin ¢o+ {P,) cos ¢o (12.2.5b)
where
X Or={ValX W)
and

XH=<ylX]|y),etc.
In analogy with the translation problem, we define the action of U[R] on position
eigenkets:

U[R]|x, y>=|x cos ¢o—y sin ¢g, x sin ¢o+ y cOs o) (12.2.6)

As in the case of translations, this equation is guided by more than just Eq. (12.2.4),
which specifies how (X ) and {Y) transform: in omitting a possible phase factor
g(x, »), we are also ensuring that {P,> and {P,) transform as in Eq. (12.2.5).

One way to show this is to keep the phase factor and use Egs. (12.2.5a) and
(12.2.5b) to eliminate it. We will take the simpler route of dropping it from the
outset and proving at the end that {P,)> and (P, transform according to Eq.
(12.2.5).

Explicit Construction of U[R]

Let us now construct U[R]. Consider first an infinitesimal rotation &.k. In this
case we set

. ULR(£.K)]=I- i‘gzhL’ (12.2.7)

 We will suppress the rotation angle when it is either irrelevant or obvious.
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308 where L., the generator of infinitesimal rotations, is to be determined. Starting wit

CHAPTER 12 Eq. (12.2.6), which becomes to first order in &, 5
UIRl\x, y)=|x—ye., xe.+y) (1Y)

it can be shown that '

y— X&) (1229

L4

Exercise 12.2.1.* Provide the steps linking Eq. (12.2.8) to Eq. (12.2.9). [Hint: R l
derivation of Eq. (11.2.8) from Eq. (11.2.6).]

Expanding both sides to order ¢,
<x, ylllw>-—<x YILy)= l//(x,y)+—(y£z)+*( x€z)

0
< YLy =[x<—iﬁ *>— <—tﬁ w(x,y)
oy

So

L—— x(—th 0 )—y(—iﬁ i)
coordinate ay ax

basis

or in the abstract

L.=XP,— YP, W )

Let us verify that (P.) and {P,) transform according to Eq. (12.2.5). Since

L—— |2 p—inl (12210
mogler}tum apx Y apy

it is clear that

—_'<px,pyle|W> *(py z)+——( Dx z)
0px opy

Thus I—ig,L./# rotates the momentum space wave function y(p,,p,) by ¢ i
momentum space, and as a result {P,> and {P,) transform just as (X and ()
do, i.e., in accordance with Eq. (12.2.5).



We could have also derived Eq. (12.2.11) for L, by starting with the passive
transformation equations for an infinitesimal rotation:

U'IRIXU[R)=X - Ye, (12.2.14a)
UNRIYU[R]=Xe,+ Y (12.2.14b)
U'[RIP.U[R]=P.— P,¢, (12.2.15a)
U'[R|P,U[R]=P.&.+P, (12.2.15b)

By feeding Eq. (12.2.7) into the above we can deduce that

(X, L) =—ihY (12.2.16a)
[Y, L]=ikX (12.2.16b)
[P, L.]=—iiP, (12.2.17a)
[P,, L.]=i#P, (12.2.17b)

These commutation relations suffice to fix L, as XP,— YP,.

Exercise 12.2.2. Using these commutation relations (and your keen hindsight) derive
L,=XP,— YP,. At least show that Egs. (12.2.16) and (12.2.17) are consistent with L. =
XP,—-YP,.

The finite rotation operator U[R(pok)] is

U[R(¢ok)] = lim <I~£ %L) = exp(—idoL./H) (12.2.18)

Given

g dolond

coordinate
asis ay ax

it is hard to see that e "»"/* indeed rotates the state by the angle ¢o. For one
thing, expanding the exponential is complicated by the fact that x(—i#0/dy) and
y(—ihd/dx) do not commute. So let us consider an alternative form for L. It can
be shown, by changing to polar coordinates, that

0
Lzm _ih£ (12.2.19)
basis
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This result can also be derived more directly by starting with the requir
that under an infinitesimal rotation &.k, w(x, y)=w(p, ¢ ) becomes y(p, ¢—

Exercise 12.2.3.* Derive Eq. (12.2.19) by doing a coordinate transformation on Fg
(12.2.10), and also by the direct method mentioned above.

Now it is obvious that

coordinate
basis

exp(—igoL:/B) —— exp ( — ¢ a—%) (12.2.20

rotates the state by an angle ¢, about the z axis, for

exp(— ¢o0/09) w(p, ¢) = w(p, ¢ — o)

by Taylor’s theorem. It is also obvious that U[R(¢pik)U[R(¢ok)]=
U[R((¢o+ ¢0)k)]. Thus the rotation operators have the right law of combination

Physical Interpretation of L,. We identify L, as the angular momentum oper:-
tor, since (i) it is obtained from /., = xp, — yp. by the usual substitution rule (Postul«
II), and (ii) it is the generator of infinitesimal rotations about the z axis. L.
conserved in a problem with rotational invariance: if

U'[RIH(X, P,; Y, P,)U[R]=H(X, P.; Y, P,) (12224
it follows (by choosing an infinitesimal rotation) that g |
[L.,H]=0 (12.2.22

Since X, P,, Y, and P, respond to the rotation as do their classical counterparis
[Egs. (12.2.14) and (12.2.15)] and H is the same function of these operators as ¥
is of the corresponding classical variables, H is rotationally invariant whenever
H is.

Besides the conservation of {L.), Eq. (12.2.22) also implies the following:

(1) Anexperiment and its rotated version will give the same result if H is rotationally
invariant.

(2) There exists a common basis for L, and H. (We will spend a lot of time discussing
this basis as we go along.)

The Consistency Check. Let us now verify that our rotation and translation
operators combine as they should. In contrast to pure translations or rotations,
which have a simple law of composition, the combined effect of translations and
rotations is nothing very simple. We seem to be facing the prospect of considering
every possible combination of rotations and translations, finding their net effect, and
then verifying that the product of the corresponding quantum operators equals the



operator corresponding to the result of all the transformations. Let us take on¢ small
step in this direction, which will prove to be a giant step toward our goal.
Consider the following product of four infinitesimal operations:
'f,gf
¥ UIR(~ &:K]T(—e) UIR(z:K)]T(E)
k)

where £= &xi+ &,§. BY subjecting a point in the x-y plane to these four operations

we find
H {ﬁ .ﬂ {<x+ex)—<y+£y>gz]
yl e Ly+e R(eW) | (x+ sx)£z+(y+£y)
[x— (y+ gy)g,} [x— eysz] (12.2.23)
o | (xt+ en)e T YIRESO Ly F Exé:

ie., that the net effect is a translation by —&,&:i+ & ¢.j.] In the above, we have
ignored terms involving &, sf,, &, and beyond. We do, however, retain the &xé&:
and &, terms since they contain the first germ of noncommutativity. Note that
although these ar¢ second-order terms, they are fully determined in our approxima-
tion, i.e. unaffected by the second-order terms that we have ignored. Equation
(12.2.23) imposes the following restriction on the quantum operators:

U[R(— &K)]T( —g)U[R(e:k)] T(€)=T(— g€ it £c&:3) (12.2.24)

i i i i
(1+% 82L2>\:I+% (&x P+ s,,P,,)}(I—% £ZLZ>[I—% (&xPi+ £yPy)]
-~ i i
‘ ~I4 s e Pemy BoPs (12.2.25)

By matching coefficients (you should do this) we can deduce the following
constraints:

[P, L.)=—i#P,
[P,, L.]=ifiPy

which are indeed satisfied by the generators [Eq. (12.2.17)].
So our operators have passed this test. But many other tests ar¢ possible. How
about the coefficients of terms such as &x&2, Or mMoOre generally, how about finite

1 Note that if rotations and translations commuted, the fourfold product would equal /, as can be seen

by rearranging the factors so that the two opposite rotations and the two opposite translations cancel
each other. The deviation from this result of I is a measure of noncommutativity. Given two symmetry
operations that do not commute, the fourfold product provides a nice characterization of their noncom-
mutavity. As we shall see, this characterization is complete.
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rotations? How about tests other than the fourfold product, such as one involving
14 translations and six rotations interlaced?

There is a single answer to all these equations: there is no need to conduct any
further tests. Although it is beyond the scope of this book to explain why this is so,
it is not hard to explain when it is time to stop testing. We can stop the tests when
all possible commutators between the generators have been considered. In the present
case, given the generators P, P,, and L., the possible commutators are [P,, L)
[Py, L], and [P, P,]. We have just finished testing the first two. Although the third
was tested implicitly in the past, let us do it explicitly again. If we convert the law
of combination

[jvc] [x + £x] [x + £x} [y x } B]
£xd y 6 Lyt &yl ~&d + £yl —s&j

into the operator constraint
T(— ) T(— &) T(e,))T(eci)=1 (12.2
we deduce that

[an Pv]=0

which of course is satisfied by the generators P, and P,. [Although earlier on, we
did not consider the fourfold product, Eq. (12.2.27), we did verify that the arguments
of the T operators combined according to the laws of vector analysis. Equation
(12.2.26) is just a special case which brings out the commutativity of P, and P, ]

When I say that there are no further tests to be conducted, I mean the following:

(1) Every consistency test will reduce to just another relation between the com-
mutators of the generators.

(2) This relation will be automatically satisfied if the generators pass the tests
we have finished conducting. The following exercise should illustrate this point.

’

Exercise 12.2.4.* Rederive the equivalent of Eq. (12.2.23) keeping terms of order &,
(You may assume £,=0.) Use this information to rewrite Eq. (12.2.24) to order &£,
equating coefficients of this term deduce the constraint

~2L,P L.+ P, L1+ L P,=FP,
This seems to conflict with statement (1) made above, but not really, in view of the identity
—2AQA+ QA+ AQ=[A, [A, Q]]

Using the identify, verify that the new constraint coming from the £,£7 term is satisfied given
the commutation relations between P,, P,, and L,.

k]



Vector Operators

We call V= V.i+ V,j a vector operator if V, and V, transform as components
of a vector under a passive transformation generated by U[R]:

U'IRIV:UIRI=Y Ry V;

where R; is the 22 rotation matrix appearing in Eq. (12.2.1). Examples of V are
P=P.,i+P,j and R=Xi+ Yj [see Egs. (12.2.14) and (12.2.15)]. Note the twofold
character of a vector operator such as P: on the one hand, its components are
operators in Hilbert space, and on the other, it transforms as a vector in VA(R).

The same definition of a vector operator holds in three dimensions as well, with
the obvious difference that Ry is a 3x3 matrix.

12.3. The Eigenvalue Problem of L,

We have seen that in a rotationally invariant problem, H and L. share a common
basis. In order to exploit this fact we must first find the eigenfunctions of L.. We
begin by writing

L\Ly=L\L) (12.3.1)
in the coordinate basis:
i v (P,
—if ﬂ;ﬁﬂ= Lyiu(p, 9) (12.3.2)
The solution to this equation is
* vi(p, 9)=R(p) =" (12.3.3)

where R(p) is an arbitrary function normalizable with respect to fo P dp.I We shall
have more to say about R(p) in a moment. But first note that /, seems to be arbitrary:
it can even be complex since ¢ goes only from 0 to 27. (Compare this to the
eigenfunctions ¢7/% of linear momentum, where we could argue that p had to be
real to keep |y| bounded as |x| = 00.) The fact that complex eigenvalues enter the
answer, signals that we are overlooking the Hermiticity constraint. Let us impose it.
The condition

" il L2y =<yl Ly * (12.3.4)

1 This will ensure that v is normalizable with respect to

.” dxdy=.roj‘ ”pdpdqb
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becomes in the coordinate basis

e} 2 . ) a e} 2 . ' a *
R s [ L R

If this requirement is to be satisfied for all y; and y», one can show (upon inte
by parts) that it is enough if each y obeys

v(p, 0)=y(p, 27) (123]
If we impose this constraint on the L, eigenfunctions, Eq. (12.3.3), we find
1=""/" (1237
This forces /. not merely to be real, but also to be an integral multiple of #:

L=mh, m=0,£1, £2, ... (12381

i

One calls m the magnetic quantum number. Notice that [,=m# implies that y is s
single-valued function of ¢. (However, see Exercise 12.3.2.)

Exercise 12.3.1. Provide the steps linking Eq. (12.3.5) to Eq. (12.3.6). i

Exercise 12.3.2. Let us try to deduce the restriction on /. from another angle. Consider
a superposition of two allowed /, eigenstates:

v(p, §)=A(p) €**/"+ B(p) &'*'"

By demanding that upon a 2z rotation we get the same physical state (not necessarily the
same state vector), show that /. —,=m#, where m is an integer. By arguing on the grounds
of symmetry that the allowed values of /, must be symmetric about zero, show that thew
values are either ..., 3%/2, h/2, —#/2, —3#%/2,...0r...,2h, %, 0, —#, —2#,.... It is nu
possible to restrict /, any further this way. -

Let us now return to the arbitrary function R(p) that accompanies the eigen-
functions of L.. Its presence implies that the eigenvalue /,=m# does not nail down
a unique state in Hilbert space but only a subspace V,,. The dimensionality of this
space is clearly infinite, for the space of all normalizable functions R is infinite
dimensional. The natural thing to do at this point is to introduce some operator that
commutes with L, and whose simultaneous eigenfunctions with L. pick out a unique
basis in each V,,. We shall see in a moment that the Hamiltonian in a rotationally
invariant problem does just this. Physically this means that a state is not uniquelv
specified by just its angular momentum (which only fixes the angular part of th:
wave function), but it can be specified by its energy and angular momentum in a
rotationally invariant problem. i



E 3

IE roves convenient to introduce the functions
D,.($)=(2m)* ™ (12.3.9)

which would have been nondegenerate eigenfunctions of L. if the p coordinate had
not existed. These obey the orthonormality condition

l. JZ” O (D) Do (P) AP = 6 (12.3.10)
0
It wil! be seen that these functions play an important role in problems with rotational
invariance.
Exercise 12.3.3.* A particle is described by a wave function
¥ y(p, §)=A e "* cos’ ¢
Show (by expressing cos” ¢ in terms of @,,) that
3 P(.=0)=2/3
P(L.=2#)=1/6
P(l,=—2#)=1/6

—p2/2A2

(Hint: Argue that the radial part e is irrelevant here.)

Exercise 12.3.4.* A particle is described by a wave function
w(p, $)=A4 e (i cos ¢ +sin ¢>

Show that

P(l.=H)=P(l.=-k)=3

Solutions to Rotationally Invariant Problems

Consider a problem where V(p, ¢ )= V(p). The eigenvalue equation for H is

-#( 10 1 52) }
— |5t ot 5]tV |vele, $)=Eve(p, 12.3.11
[2;1 <6p2 o op P o (p) |Welp, D)=Eve(p, ¢) ( )

(We shall use p to denote the mass, since m will denote the angular momentum
quantum number.) Since [H, L.]=0 in this problem, we seek simultaneous eigen-
functions of H and L.. We have seen that the most general eigenfunction of L. with
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“that

eigenvalue mfi is of the form

¥u(p, §) = R(p)(27)™"%™* = R(p)®,..($)

where R(p) is undetermined. In the present case R is determined by the requi

Yem(P, §) = Rem(P) (@) a
be an eigenfunction of H as well, with eigenvalue E, i.e., that yg, satis
(12.3.11). Feeding the above form into Eq. (12.3.11), we get the radial equation
determines Rg,(p) and the allowed values for E:

—hz(d2 1d mz) :I
—— |5 +— == |+ "(p) | Ren(p) = ERgy

As we change the potential, only the radial part of the wave function, R, cha
the angular part ®,, is unchanged. Thus the functions ®,,(¢), which were obtaine
by pretending p does not exist, provide the angular part of the wave function in
eigenvalue problem of any rotationally invariant Hamiltonian,

Exercise 12.3.5* Note that the angular momentum seems to generate a repulsive §
tial in Eq. (12.3.13). Calculate its gradient and identify it as the centrifugal force.

Exercise 12.3.6. Consider a particle of mass ¢ constrained to move on a circle of
a. Show that H=L12/2ua’. Solve the eigenvalue problem of H and interpret the degeneracy,

Exercise 12.3.7.* (The Isotropic Oscillator). Consider the Hamiltonian

"

_PI+P;
2p

1
H +5uw2(xz+ 7?)

(1) Convince yourself [H, L.]=0 and reduce the eigenvalue problem of H to the radial
differential equation for Rg,.(p).
(2) Examine the equation as p—0 and show that

Ren(p) 53 9™
(3) Show likewise that up to powers of p

—uwp?/2h
Ren(p) 2 €

So assume that Re.(p)=p"™ e **# /U (p).




-
(4) Switch to dimensionless variables £=E/fiw, y=(uw/#)'*p. 317
(5) Convert the equation for R into an equation for U. (I suggest proceeding in two ROTATION
L R=, — Y2 .
stages: R=)'"f, f=e7>72U.) You should end up with INVARIANCE

AND ANGULAR
2m|+1
; U”+|:< L )—2y}U’+(28—2|m|—2)U=0
- Y

MOMENTUM
{(6) Argue that a power series for U of the form

U= Cy

r=0

will lead to a two-term recursion relation.

(7) Find the relation between C,., and C,. Argue that the series must terminate at some
finite r if the y— oo behavior of the solution is to be acceptable. Show e=r+[m| + 1 leads to
termination after r terms. Now argue that r is necessarily even—i.e., r=2k. (Show that if r is
odd, the behavior of R as p—0 is not p".) So finally you must end up with

* E=Qk+|m|+ Do, k=0,1,2,...
Define n=2k +|m|, so that
E,=(n+1)fio

(8) For a given n, what are the allowed values of |m|? Given this information show that
for a given n, the degeneracy is n + 1. Compare this to what you found in Cartesian coordinates
(Exercise 10.2.2).

(9) Write down all the normalized eigenfunctions corresponding to n=0, 1.

(10) Argue that the n=0 function must equal the corresponding one found in Cartesian
coordinates. Show that the two n=2 solutions are linear combinations of their counterparts
in Cartesian coordinates. Verify that the parity of the states is (—1)" as you found in Cartesian
coordinates.

Exercise 12.3.8.* Consider a particle of charge ¢ in a vector potential
B
A= ) (—yi+xj)

(1) Show that the magnetic field is B= Bk.

(2) Show that a classical particle in this potential will move in circles at an angular
frequency wo=9B/uc.

(3) Consider the Hamiltonian for the corresponding quantum problem:

; Pty YB/2c] P qXB/2c)
: 2u 2u

Show that Q=(cP.+¢YB/2)/qB and P=(P,—qXB/2c) are canonical. Write A in terms
of P and Q and show that allowed levels are E=(n+1/2)Aw,.
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(4) Expand H out in terms of the original variables and show

H=H(@,u)—@ L.
2 2

where H(wo/2, pt) is the Hamiltonian for an isotropic two-dimensional harmonic osci
of mass y and frequency wo/2. Argue that the same basis that diagonalized H(wo/2, )
diagonalize H. By thinking in terms of this basis, show that the allowed levels for H,
E=(k+3|m| - 5m+ 3)#hw,, where k is any integer and m is the angular momentum.
vince yourself that you get the same levels from this formula as from the earlier
[E=(n+1/2)hw,]. We shall return to this problem in Chapter 21.

12.4. Angular Momentum in Three Dimensions
It is evident that as we pass from two to three dimensions, the operator L,
up two companions L, and L, which generate infinitesimal rotations about t
and y axes, respectively. So we have
L,=YP,—ZP, (1241
L,=ZP.—XP, (1241
L.=XP,— YP, (12.4.14
As usual, we subject these to the consistency test. It may be verified, (Exercise 12.
that if we take a point in three-dimensional space and subject it to the follo
rotations: R(&xi), R(g,j), R(—é&.d) and lastly R(—¢,j), it ends up rotated
— &,&,k. In other words i
R(— &,i)R(— &:D)R(&,1)R(£:1) = R(~ £:6,k)

It follows that the quantum operators U[R] must satisfy
U[R(— & })IU[R(— &:)]U[R(&,)IUIR(&:1)]= U[R(— &:6,K)] (12
If we write each U to order ¢ and match coefficients of ¢,¢,, we will find

[Ly, L) =iAL. (12

By considering two similar tests involving &,¢, and é&.£,, we can deduce
constraints

[Ly ) Lz] = thx

(L., L] =ikL,



You may verify that the operators in Eq. (12.4.1) satisfy these constraints. So they
are guaranteed to generate finite rotation operators that obey the right laws of

combination,
The three relations above may be expressed compactly as one vector equation

L x L= AL (12.4.5)

Yet another way to write the commutation relations is

3
[Li, Lij=if Y eulLs (12.4.6)
=

1

In this equation, i and j run from 1 to 3, L,, L, and L; stand for L,, L,, and L.,
respectively,] and &, are the components of an antisymmetric tensor of rank 3, with
the following properties:

(1) They change sign when any two indices are exchanged. Consequently no two
indices can be equal.
(2) = 1.

This fixes all other components. For example,
s="1, en=(—D(-1)=+1 (12.4.7)

and so on. In short, g, is +1 for any cyclic permutation of the indices in &,; and
-1 for the others. (The relation

c=axbh (12.4.8)

between three vectors from V3(R) may be written in component form as

3 3

Ci= Z Z S[jkajbk (1249)

J=1k=1

Of course a X a is zero if a is a vector whose components are numbers, but not zero
if it is an operator such as L.)

Exercise 12.4.1.* (1) Verify that Eqs. (12.4.9) and Eq. (12.4.8) are equivalent, given the
definition of & .

() Let Uy, Us, and U; be three energy eigenfunctions of a single particle in some
potential. Construct the wave function y 4(x;, X2, X3) of three fermions in this potential, one
of which is in Uy, one in U,, and one in Us, using the g, tensor.

Exercise 12.4.2.* (1) Verify Eq. (12.4.2) by first constructing the 3 x 3 matrices corre-
sponding to R(s.i) and R(g,j), to order &.
(2) Provide the steps connecting Eqgs. (12.4.3) and (12.4.4a).

{ We will frequently let the indices run over 1, 2, and 3 instead of x, y, and z.
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(3) Verify that L, and L, defined in Eq. (12.4.1) satisfy Eq. (12.4.4a). The proof v
other commutators follows by cyclic permutation.

We next define the total angular momentum operator squared
D=L+ L+ 12
It may be verified (by you) that

[L?, L:]1=0, i=x,y,orz

Finite Rotation Operators. Rotations about a given axis commute. So
rotation may be viewed as a sequence of infinitesimal rotations about the sa
What is the operator that rotates by angle 0, i.e., by an amount ¢ about
parallel to 67 If 8= 6,,i, then clearly

UIR(8,i)) =€ :5/"

The same goes for 8 along the unit vectors j and k. What if 8 has some ar
direction? We conjecture that LG*B L (where 6= 0/8) is the generator o
itesimal rotations about that axis and that

. N
U[R(9)]= lim (I—i 9 9 L) OB LA
i N

N-ow

=g HOL/A (1241
Our conjecture is verified in the following exercise. !

Exercise 12.4. 3.* We would like to show that §-L generates rotations about the
parallel to @. Let 50 be an infinitesimal rotation parallel to 0. ‘

(1) Show that when a vector r is rotated by an angle 60, it changes to r+450xr, t
might help to start with rL 50 and then generalize.) :
(2) We therefore demand that (to first order, as usual)

y(r) — y(r—50x1)=y(r)— (58 xr)- Vy
U[R(50)]
Comparing to U[R(88)]=1—(i 56/#)L, show that L;=6-L

Exercise 12.4.4.* Recall that V is a vector operator if its components V; transform

U'[RIV,U[R]=Y R;V, (124

J



(1) For an infinitesimal rotation 60, show, on the basis of the previous exercise, that

J J ok

(2) Feed in U[R]=1—(i/#)50-L into the left-hand side of Eq. (12.4.13) and deduce
that

Wi, LY=ihY en Vs (12.4.14)
k

This is as good a definition of a vector operator as Eq. (12.4.13). By setting V=L, we can
obtain the commutation rules among the L’s.

If the Hamiitonian is invariant under arbitrary rotations,
U'IR)JHU[R]=H (12.4.15)
it follows (upon considering infinitesimal rotations around the x, y, and z axes) that
* [H, L}=0 (12.4.16)
and from it
[H, L’1=0 (12.4.17)

Thus L* and all three components of L are conserved. It does not, however, follow
that there exists a basis common to H and all three L’s. This is because the L’s do
not commute with each other. So the best one can do is find a basis common to H,
L’, and one of the L’s, usually chosen to be L..

We now examine the eigenvalue problem of the commuting operators L’ and
L.. When this is solved, we will turn to the eigenvalue problem of H, L? and L,.

125. The Eigenvalue Problem of L and L,

There is a close parallel between our approach to this problem and that of the
harmonic oscillator. Recall that in that case we (1) solved the eigenvalue problem
of H in the coordinate basis; (2) solved the problem in the energy basis directly,
using the @ and @' operators, the commutation rules, and the positivity of H;
(3) obtained the coordinate wave function y,(y) given the results of part (2), by
the following trick. We wrote

al0>=0

in the coordinate basis as

(y +£> Vo(¥)=0
0y
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determined.

Given the normalized eigenfunction wo(y), we got w,(y) by the appli
the (differential) operator (a')"/(n!)"/*>(y—2a/0y)"/(2"n1)'"2.

In the present case we omit part (1), which involves just one more boutwi
differential equations and is not particularly enlightening.
Let us now consider part (2). It too has many similarities with part (Z{f‘

which immediately gave us yo( ») ~¢ "2, up to a normalization that could blnl
catin o

oscillator problem.] We begin by assuming that there exists a basis |a, B)
to L? and L.:

Llapy=alap) (&-5-1
LAaB)>=pBlap) (125

We now define raising and lower operators
L.=L,+iL,
which satisty
[L:,L.)=+hAL.
and of course (since L’ commutes with L, and L,)

(L% L.]=0

Equations (12.5.4) and (12.5.5) imply that L. raise/lower the eigenvalue of L,
#i, while leaving the eigenvalue of L” alone. For example,

L.(Lilapy)=(L+L.+AL)|af)
=(L+B+hAL)|ap)
=(B+A)(LilaB>)

and
L2L+| aBy=L, L2| af>=al.lap)

From Egs. (12.5.6) and (12.5.7) it is clear that L.|a ) is proportional to the no
ized eigenket |a, f+7):

LiaBy=C(a, Pla, p+7) (1

1 If you have forgotten the latter, you are urged to refresh your memory at this point.
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states |a, B+H), ja, B+2A),...; and |a, f—5), |a, B—24),.... This clearly
signals trouble, for classical intuition tells us that the z component of angular momen-
tum cannot take arbitrarily large positive or negative values for a given value of the
square of the total angular momentum; in fact classically |Z| < (/)"

Quantum mechanically we have

¥ aP|L’~Lapy=<ap|Li+Lap> (125.9)
which implies
a-p*=0
(since L2+ L2 is positive definite) or

!’ a>p? (12.5.10)

Since B* is bounded by a, it follows that there must exist a state |@ Bma.p such that
it cannot be raised:

Li)aBmaxy=0 (12.5.11)
Operating with L_ and using L L, =L*~L.—#L., we get

(L= L2 = AL.)| 0 Brrax) =0
: (a _ﬂrznax_hﬂmmc)laﬂmax>=0
- 0= Brax(Bmax + #) (12.5.12)
Starting with |@fBmaxy let us operate k times with L_, till we reach a state |aBmin)
that cannot be lowered further without violating the inequality (12.5.10):
L“I aﬂmin> = O
LiL-| aﬂmin> =0

(L*= L2+ A1) |0 Bminy =0
@ = Brnin Brmin — #) (12.5.13)

A comparison of Egs. (12.5.12) and (12.5.13) shows (as is to be expected)

Brnin =~ Bimax (12.5.14)
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Table 12.1. Some Low-Angular-Momentum States

(Angular momentum)

k/2 Brmax a [af)
0 0 0 10, 0>
1/2 #/2 (1/2)(3/2)% ((3/4)12, #/2)
|3/4)H, —h/2)
1 # " |27, Fiy
127, 0
|27, ~A)

3/2

Since we got to |@fminy from |afmaxy In k steps of # each, it follows that

ﬂmax - ﬂmin = 2ﬂmax =ik

Tk
max = ") k=0,1,2, ...
P 2

@ = (Bmax)(Bmax + ) = hz(g)(g"‘ 1)

We shall refer to (k/2) = (Bmax/#) as the angular momentum of the state. Noti
that unlike in classical physics, BZay is less than @, the square of the magnitude
angular momentum, except when a=fn.,=0, ic., in a state of zero an
momentum.

Let us now take a look at a few of the low-angular-momentum states lis
Table 12.1.

At this point the astute reader raises the following objection.

A.R.: I am disturbed by your results for odd 4. You seem to find that
have half-integral eigenvalues (in units of #). But you just convinced us in
12.3 that L, has only integral cigenvalues m (in units of #). Where did you go

R.S.: Nowhere, but your point is well taken. The extra (half-integral) eig
ues arise because we have solved a more general problem than that of L,, L
and L? (although we didn’t intend to). Notice that nowhere in the derivation
use the explicit expressions for the L’s [Eq. (12.4.1)] and in particular L,——~
d¢. (Had we done so, we would have gotten only integral eigenvalues as you ex
We relied instead on just the commutation relations, L X L=iAL. Now, these co!
tation relations reflect the law of combinations of infinitesimal rotations in
dimensions and must be satisfied by the three generators of rotations whatev
nature of the wave functions they rotate. We have so far considered just scalar waw:
functions y(x, y, z), which assign a complex number (scalar) to each point. Now,
there can be particles in nature for which the wave function is more complicated,
say a vector field W(x, y, z) = w.(x, y, 2)i+ w,(x, y, 2)j + v.(x, y, x)k. The responst
of such a wave function to rotations is more involved. Whereas in the scalar case
the effect of rotation by 60 is to take the number assigned to each point (x,y.2)



-
Figmre 12.1. The effect of the infinitesimal rotations by &, V'
ona vector v in two dimensions is to (1) first reassign it ,L___ﬁ
to the rotated point (x', ¥) (2) and then rotate the vector //' ',y
itself by the infinitesimal angle. The differential operator L, A v
does the first part while a 2x 2 spin matrix S, does the ’,z’\fg——" (x,¥)

second. L X

and reassign it to the rotated point (x', ', Z'), in the vector case the vector at (x, y, z)
(i) must itself be rotated by 50 and (ii) then reassigned to (x, ', 2"). (A simple
example from two dimensions is given in Fig. 12.1.) The differential operators L,
L, and L, will only do part (i) but not part (i), which has to be done by 3x3
matrices Sy, Sy, and S; which shuffie the components ¥, vy, V- of ¥. In such
cases, the generators of infinitesimal rotations will be of the form

JizLi+Si

where L; does part (2) and S; does part (1) (see Exercise 12.5.1 for a concrete
example). One refers to L; as the orbital angular momentum, S; as the spin angular
momentum (or simply spin), and J; as the total angular momentum. We do not yet
know what J; or S; look like in these general cases, but we do know this: the J7’s
must obey the same commutation rules as the L;s, for the commutation rules reflect
the law of combination of rotations and must be obeyed by any triplet of generators
(the consistency condition), whatever be the nature of wave function they rotate. So
in general we have \

IxJ=ihJ (12.5.16)

with L as a special case when the wave function is a scalar. So our result, which
followed from just the commutation relations, applies to the problem of arbitrary J
and not just L. Thus the answer to the question raised earlier is that unlike L., J;
is not restricted to have integral eigenvalues. But our analysis tells us, who know
very little about spin, that S; can have only integral or half-integral eigenvalues if
the commutation relations are to be satisfied. Of course, our analysis doesn’t imply
that there must exist particles with spin integral or half integral—but merely reveals
the possible variety in wave functions. But the old maxim—if something can happen,
it will—is true here and nature does provide us with particles that possess spin—i.e.,
particles whose wave functions are more complicated than scalars. We will study
them in Chapter 14 on spin.

Exercise 12.5.1.* Consider a vector field ¥(x, y) in two dimensions. From Fig. 12.1 it
follows that under an infinitesimal rotation &.k,

Vo WX, Y) = WX+ YE:, ¥ = XE) Y (x HYE, Y T XE)E:

W,— WX, V) =YXt YE, ymxE)E T Y (X TYE, y—Xxe€:)
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Show that (to order ¢,)

et e P o P
v, 0 1 ALO L, AiLih O v,
so that

L=L"QI?+1"Q85®
=L.+8S,

where 7¥ is a 2 x 2 identity matrix with respect to the vector components, 7 is the ident
operator with respect to the argument (x, y) of W(x, y). This example only illustrates the fir
that J,= L.+, if the wave function is not a scalar. An example of half-integral ej,
will be provided when we consider spin in a later chapter. (In the present example;
eigenvalues +7.) :

Let us return to our main discussion. To emphasize the generality of the
we have found, we will express them in terms of J’s rather than L’s and also
to a more common notation. Here is a summary of what we have fou
eigenvectors of the operators J* and J, are given by

Jmd=ji+ D jmd,  j=0,1/2,1,3/2, ... (12517
J| jm) =mh| jm), m=jj=1,j=2,...,—j (12517

We shall call j the angular momentum of the state. Note that in the above m canlx
an integer or half-integer depending on j.

The results for the restricted problem J=1L that we originally set out to sc
are contained in Eq. (12.5.17): we simply ignore the states with half-integral man
J. To remind us in these cases that we are dealing with J=L, we will denote thex
states by |/m). They obey

Llm> =1+ D)#Imd, 1=0,1,2,... (125.1%

Lilmy=miillmy,  m=Li—1,..., —I (l*Sbl

Our problem has not been fully solved: we have only found the eigenvalues—
the eigenvectors aren’t fully determined yet. (As in the oscillator problem, finding
the eigenvectors means finding the matrices corresponding to the basic operatos
whose commutation relations are given.) Let us continue our analysis in terms of
the J’s. If we rewrite Eq. (12.5.8) in terms of J.,j, and m (instead of L., ¢, and

B), we get
Jeljmy=C.(j,m)|j,m+1) (12.5.19

where C.(j, m) are yet to be determined. We will determine them now.



If we take the adjoint of

J.\jmy=C+(jy m)lj, m+ 1)
we get
(ml| J-= Cx(j, m)j, m+ 1

Equating the inner product of the objects on the left-hand side to the product of the
objects on the right-hand side, we obtain

Gm) J- T\ jmy =1 C(js m*G, m+1jm+1)
=|C+(j, m)I®
Gm) P2 =T =BT jmy=1C.(y m)I*
or
|C, (G, m))>=j(j + DI = m* B —mh’
=R(—-m)(j+m+1)
or}

C.(j,my=h(j—m)(j+tm+ 2
It can likewise be shown that

C_(j, m)=H{(+m)(G—m+ D]
so that finally
Juljmd=H(Fm)(j£m+ D] j,m=1) (12.5.20)
Notice that when J. act on |j, &/ they kill the state, so that each family with a
given angular momentum j has only 2j+1 states with eigenvalues jA,
(j-D#, ..., —(jh) for J-.

Equation (12.5.20) brings us to the end of our calculation, for we can write
down the matrix elements of J; and J, in this basis:

Je+J-

Gm| I jmy =G| Ljm>

/]
=E {6le 6m'»m+1[(j—m)(j+m+ 1)]1/2+ 6j'j' 6m',m—1

< [(j+m)(j—m+1D]'"*} (12.5.21a)

1 There can be an overall phase factor in front of C,. We choose it to be unity according to standard
convention.
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| jm>
A . . 172
=5;. {5ﬁ’5m’,m+1[(}—m)(}+m+ DI =65 6mm—1

X [(j+m)(j—m+1)]"% (L!ZIb

Using these (or our mnemonic based on images) we can write down the matrica
corresponding to J 2 J.,J., and J, in the |jm) basis}: 1

j,mi,""l 0.0 &5 6= ALy 1,y (1,1

(0, 0) 0 0 0 0 0 0
R 0 2n 0 0 0 0
- ¢ -h 1o 0 In? 0 0 0
(1,n 0 0 0 20 0 0
1,0) 0 0 0 0 20 0
a-n o 0 0 0 0 2H?
| N
J is also diagonal with elements mfi.
[0 0 0 0 0 0 -]
0 0 #2 O 0 0
0 #/2 0 0 0 0
J-lo o0 o 0 w2 0 (1252
0 0o o #nR2r o0 #pR”2
0 0 0 0 #2700 '
0 0 0 0 0 0
0 0 -2 0 0 0
0 if/2 0 0 0 0 k
J-10 0 0 0 —iti/2"? 0 (12.5.4
0 0 0 innR'"2 0 —ih/2'?
0 0 0 0 ifi/2'? 0

Notice that although J, and J, are not diagonal in the |jm > basis, they are block
diagonal: they have no matrix elements between one value of j and another. Thisis

1 The quantum numbers j and m do not fully label a state; a state is labeled by |ajm), where ¢ represents
the remaining labels. In what follows, we suppress a but assume it is the same throughout.



because J. (out of which they are built) do not change j when they act on |jm).
Since the J’s are all block diagonal, the blocks do not mix when we multiply them.
In particular when we consider a commutation relation such as [J,, J,)=ihJ,, it will
be satisfied within each block. If we denote the (2j+ 1) X (2j+ 1) block in J;, corre-
sponding to a certain j, by JY then we have

[JXU), JyU)]=iﬁJz(j), j=0, %, 1,... (12.5.25)

Exercise 12.5.2. (1) Verify that the 2 x 2 matrices J¢/?, J/?, and J{'/® obey the com-
mutation rule [J/?, JP1=ih D,

(2) Do the same for the 3 x 3 matrices J\".

(3) Construct the 4 X 4 matrices and verify that

[J)SZ/Z)’ J;3/2)]=ih.]z(3/2)

Exercise 12.5.3.* (1) Show that {J,>=<J,>=0 in a state | jm).
(2) Show that in these states

(I =B = L+ 1) —m]

(use symmetry arguments to relate {J2) ta {J2)).

(3) Check that AJ, - AJ, from part (2) satisfies the inequality imposed by the uncertainty
principle [Eq. (9.2.9)].

(4) Show that the uncertainty bound is saturated in the state | j, /.

Finite Rotations$

Now that we have explicit matrices for the generators of rotations, J,, J,, and
J,, we can construct the matrices representing U[R] by exponentiating (—i0+J/
#). But this is easier said than done. The matrices J; are infinite dimensional and
exponentiating them is not practically possible. But the situation is not as bleak as
it sounds for the following reason. First note that since J; are block diagonal, so is
the linear combination 0+ J, and so is its exponential. Consequently, a/l rotation
operators U[R] will be represented by block diagonal matrices. The (2/+ 1)-dimen-
sional block at a given j is denoted by DY[R]. The block diagonal form of the
rotation matrices implies (recall the mnemonic of images) that any vector |y,> in
the subspace V; spanned by the (2j+ 1) vectors [ji), ..., [j—j)> goes into another
element | y;> of V;. Thus to rotate | ,), we just need the matrix DY. More generally,
if |w> has components only in Vo, Vi, V,, ..., V;, we need just the first (j+ 1)
matrices DY. What makes the situation hopeful is that it is possible, in practice, to
evaluate these if j is small. Let us see why. Consider the series representing D

' TG o [ _0\" .
!; D(j)[R(e)]=exp[—m J )]=Z( hlo) (O'J”))"i'
; n!

A 0

} The material from here to the end of Exercise 12.5.7 may be skimmed over in a less advanced course.
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It can be shown (Exercise 12.5.4) that (é -J _‘”)" for n>2j can be written as ‘e
combination of the first 2j powers of 6 J ) Consequently the series representiy
DY may be reduced to

DY =§€ fn(g)(é - J (D)n

i

It is possible, in practice, to find closed expressions for £,(0) in terms of trigonometr
functions, for modest values of j (see Exercise 12.5.5). For example,

DYAR]= cos<g)—g~l g- Jam» sin(g)
2/ h 2

Let us return to the subspaces V;. Since they go into themselves under arbitray
rotations, they are called invariant subspaces. The physics behind the invariance
simple : each subspace contains states of a definite magnitude of angular momentun
squared j(j+ 1)#, and a rotation cannot change this. Formally it is becaw
[J?, U[R]]1=0 and so U[R] cannot change the eigenvalue of J°.

The invariant subspaces have another feature: they are irreducible. This means’
that V; itself does not contain invariant subspaces. We prove this by showing tha :
any invariant subspace V; of V; is as big as the latter. Let | y) be an element of V.
Since we haven’t chosen a basis yet, let us choose one such that |y ) is one of the
basis vectors, and furthermore, such that it is the basis vector | jj>, up to a normaliz !
tion factor, which is irrelevant in what follows. (What if we had already chosena
basis | j/>, ..., |J, =j> generated by the operators J;? Consider any unitary trans
formation U which converts |j/> into {y) and a different triplet of operators J|*
defined by J; = UJ,U'. The primed operators have the same commutation rules and
hence eigenvalues as the J;. The eigenvectors are just | jm)'= U] jm), with |jj)'=
|w>. In the following analysis we drop all primes.)

Let us apply an infinitesimal rotation 60 to |y ). This gives

ly">=ULR(6O]if>
== (/A) (60>
=[I—=(/20)(60.J-+80_J.+2660. )i
where

56.=(50,+i56,)
Since J.| ji> =0, J\ji> =j#ljj>, and J_| jj> =#(2)" %[, j— 1), we get

ly'> =1 =80y —3i(2)*80.1j,j— 1)

Since V; is assumed to be invariant under any rotation, [y') also belongs to"W
Subtracting (1 - ij5.)| jj>, which also belongs to V;, from | ">, we find that |, j- B¢
also belongs to V;. By considering more of such rotations, we can easily establish
that the (2j+ 1) orthonormal vectors, | ji>, |j,j—1),...,|j, —j> all belong to V¥,



Thus V; has the same dimensionality as V. Thus V; has no invariant subspaces. (In
a technical sense, V; is its own subspace and is invariant. We are concerned here
with subspaces of smaller dimensionality.)

The irreducibility of V; means that we cannot, by a change of basis within V;,
further block diagonalize all the DY’. We show that if this were not true, then a
contradiction would arise. Let it be possible to block diagonalize all the DY, say, as
follows:

2 +1

— 2+ ——

D(j)[R]

{jm) basis

<—d1—> —dy —

tr
LA 0
i

—_—
new basis

(The boxed regions are generally nonzero). It follows that V; contains two invariant
subspaces of dimensionalities d; and d2, respectively. (For example, any vector with
just the first d; components nonzero will get rotated into another such vector. Such
vectors form a d-dimensional subspace.) We have seen this is impossible.

The block diagonal matrices representing the rotation operators U[R] are said
to provide an irreducible (matrix) representation of these operators. For the set of
all rotation operators, the elements of which do not generally commute with each
other, this irreducible form is the closest one can come to simultaneous diagonaliza-

tion. All this is summarized schematically in the sketch below, where the boxed
regions represent the blocks, D, D®, . .. etc. The unboxed regions contain zeros.

[ po ]

D(1/2)

U[R)

————
|jm) basis

0 D(l)

i J

Consider next the matrix representing a rotationally invariant Hamiltonian in
this basis. Since [H, J]=0, H has the same form as J2, which also commutes with
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all the generators, namely,

(1) H is diagonal, since [H, J*]=0, [H, J.]=0.
(2) Within each block, H has the same eigenvalue E;, since [H, J.]=0.

It follows from (2) that V; is an eigenspace of H with eigenvalue E;, i.c., all staia
of a given j are degenerate in a rotationally invariant problem. Although thej
result is true classically, the relation between degeneracy and rotational inva
is different in the two cases. Classically, if we are given two states with the
magnitude of angular momentum but different orientation, we argue that they
degenerate because

(1) One may be rotated into the other.
(2) This rotation does not change the energy.

Quantum mechanically, given two elements of V,, it is not always true thaf
may be rotated into each other (Exercise 12.5.6). However, we argue as follo

(1) One may be reached from the other (in general) by the combined action
and U[R].
(2) These operators commute with H.

In short, rotational invariance is the cause of degeneracy in both cases, but
degenerate states are not always rotated versions of each other in the quantun
(Exercises 12.5.6 and 12.5.7).

Exercise 12.5.4.* (1) Argue that the eigenvalues of J and J;” arc the same as th
J?, namely, jA, (j—1)#, . .., (—j#). Generalize the result to 8- J 9.
(2) Show that

(=== DA =G =2)A] - - - (J+jA)=0

where J=6-J 9. (Hint: In the case J=J, what happens when both sides are applied tof
arbitrary eigenket | jm)? What about an arbitrary superpositions of such kets?) '

(3) 1t follows from (2) that J¥*'is a linear combination of J°, J', ..., J*. Argue
the same goes for J¥** k=1,2,....

Exercise 12.5.5. (Hard). Using results from the previous exercise and Eq. (12.5.23}
that

(1) DYP[R]=exp(—if-J /> /hy=cos (8/2) /> —(2i/#)sin(0/2)8 - T /¥
JOV Jm
(2) DW[R]=exp(—if,J" /)= (cos §,— 1)("7) —isin 9X<—ﬁ—)+[“)

Exercise 12.5.6. Consider the family of states | j>, ..., |jm),...,|J, —j>. Onerq
them as states of the same magnitude but different orientation of angular momentum.
takes this remark literally, i.e., in the classical sense, one is led to believe that one may %
these into each other, as is the case for classical states with these properties. Consid‘



istance, the family |1, 1, (1,03, 11, =15 It may seem, for example, that the state with zero
agular momentum along the z axis, |1, 0), may be obtained by rotating |1, 1) by some
itable (3 #7) angle about the x axis. Using D[R(8)] from part (2) in the last exercise
‘how that

!‘ |1, 0> #DVIR(O,)]1, 1) forany 0.

Theerror stems from the fact that classical reasoning should be applied to {J7, which responds
10 rotations like an ordinary vector, and not direcly to |jm), which is a vector in Hilbert
space. Verify that <J) responds to rotations like its classical counterpart, by showing that
(J) in the state DVIR(B,D, 15 is #[ —sin 0,j+cos 0. kl.

It is not too hard to sec why we can’t always satisfy

g Lim'>= DRI jm
or more inerally, for two normalized kets |y;) and |y, satisfy
ly;>=DP Rl

by any choice of R. These abstract equations imply (2j+ 1) linear, complex relations between
the components of |y} and |y, that can’t be satisfied by varying R, which depends on only
three parameters, 0., 6, and 0.. (Of course one can find a unitary matrix in V; that takes
|jm) into | jm’> or |y, into |w}), but it will not be a rotation matrix corresponding to U [R])

Exercise 12.5.7: Euler Angles. Rather than parametrize an arbitrary rotation by the angle
9, which describes a single Totation by € about an axis parallel to 8, we may parametrize it
by three angles, ¥, B, and « called Euler angles, which define three successive rotations:

U[R(a, ﬁ’ y)]=e*ia.lz/ﬁ e—i[i.ly/ﬁ e—iy.l,/ﬁ

(1) Construct DV[R(a, B, )} explicitly as a product of three 3% 3 matrices. (Use the
result from Exercise 12.5.5 with J,—J,.)
(2) Let it act on |1, 1) and show that (J) in the resulting state is

{J> = H(sin B cos oi+sin B sin @j+cos fk)

(3) Show that for no value of @, B, and y can one rotate |1, 1) into just |1, 05.
(4) Show that one can always rotate any |1, m) into a linear combination that involves

11,m), ie,
(1, m'|DVTR(a, B, ML, m)y #0

for some a, B, y and any m, m.
(5) To see that one can occasionally rotate | jm) into | jm'y, verify that a 180° rotation
about the y axis applied to |1, 1) turns itinto |1, — 1.

Angular Momentum Eigenfunctions in the Coordinate Basis

We now turn to step (3) outlined at the beginning of this section, namely, the
construction of the eigenfunctions of L? and L. in the coordinate basis, given the

information on the kets |In).
b 3
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Consider the states corresponding to a given /. The “topmost” state |/ s
Lly=0 (12,

If we write the operator L. =L, +iL, in spherical coordinates we find

L,—— tHhe*? <i:|: icot @ i)
coog;lslinsate 00 64)

Exercise 12.5.8 (Optional). Verify that

L,—— iﬁ(sin ¢ la—+cos dcot _6_)
co(g';islir;ate 00 a¢

d 0
Ly ——— iﬁ(—cos¢~—+sin¢cot9—)
06 o9

If we denote by wi(r, 6, ¢) the eigenfunction corresponding to |I/>, we find
satisfies '

(5%+ icot @ %) wir, 8, $)=0 (1259

Since v/ is an eigenfunction of L. with eigenvalue /%, we let

wir, 0, $)=Ui(r, 6) " (125.9)
and find that
a 1/
——lcot @|UI=0 (12.5.30)
20
cilﬁ_ld(sin 0) .
Ul sin @
or
Ui(r, )= R(r)(sin )’ (1

where R(r) is an arbitrary (normalizable) function of r. When we address the eigen-
value problem of rotationally invariant Hamiltonians, we will see that H will nail
down R if we seek simultaneous eigenfunctions of H, L? and L,. But first let us
introduce, as we did in the study of L, in two dimensions, the function that would



have been the unique, nondegenerate solution in the absence of the radial coordinate:

1/2
+1)! 1 .
@t 1) ] (sin ) " (12.5.32)

Yi0, ¢)=(— I)I[T I

Whereas the phase factor (— 1)’ reflects our convention, the others ensure that

i 2r
J.lYﬂde Ef f | Yi? d(cos 0) dp=1 (12.5.33)
-1%0

We may obtain Y}~' by using the lowering operator. Since
L[y =a[(I+DD)A L 1= 1y=6Q2DALI-1)

i o1 (=D _,»¢<£_. i)}, (12.5.34)
Y, (0, 9) o [ﬁe 0 zcot96¢ Y}

We can keep going in this manner until we reach ¥;'. The result is, for m>0,

N ,(21+1)T2L[ (I+m)! J”Z oy
A 1)[ an nlan=m] ¢ 0o

dlvm
D
d(cos 6) ™"

(sin 0)% (12.5.35)

For m<0, see Eq. (12.5.40). These functions are called spherical harmonics and
satisfy the orthonormality condition

f Y7 (0, 9)Yi'(8, ¢) d2= 81t &

Another route to the Y}" is the direct solution of the L?, L, eigenvalue problem
in the coordinate basis where

2
LZ—»(—hZ)(—_—l— O ng L4 1 %) (12.5.36)
sin 8 06 08 sin” 8 0¢
and of course
L,—~—ih _5_
¢

If we seek common eigenfunctions of the formi () ¢%, which are regular between
6=0and 7, we will find that L? has eigenvalues of the form / (/+ DA%, 1=0,1,2,...,

1 We neglect the function R(r) that can tag along as a spectator.
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where />|m|. The Y;" functions are mutually orthogonal because they are nondegﬁ
erate eigenfunctions of L? and L., which are Hermitian on single-valued functjge
of 0 and ¢.

Exercise 12.5.9. Show that L? above is Hermitian in the sense

wa(L2Wz) dQ= {J vi(L2y)) dQ]

The same goes for L., which is insensitive to @ and is Hermitian with respect to
integration. ‘

We may expand any w(r, 0, ¢) in terms of Y/(0, ¢) using r-de
coefficients [consult Eq. (10.1.20) for a similar expansion]:

09@=22:wmww¢) (1255,

Om=—1/

where
Cl'(r)= J Y78, o)y (r, 8, ¢) d (125

If we compute (w|L’|y) and interpret the result as a weighted average, we .
readily see (assuming y is normalized to unity) that ;

mﬁ=m+nﬁLﬁmm=f|dwwﬁm (1253
0

4

It is clear from the above that CJ" is the amplitude to find the particle at a rad.
distance r with angular momentum (/, m).f The expansion Eq. (12.5.37a) el
how to rotate any y(r, 6, ¢) by an angle 8 (in principle):

(1) We construct the block diagonal matrices, exp(—i0-L"/#).

(2) Each block will rotate the C/” into linear combination of each other, 1.
under the action of U[R], the coefficients C/"(r), m=1,1—1, ..., —I; will get mie
with each other by DY),

In practice, one can explicitly carry out these steps only if y contains ol
Y7”’s with small /. A concrete example will be provided in one of the exercises.

1 Note that r is just the eigenvalue of the operator (X*+ ¥*+Z%)"/> which commutes with L” and L



Here are the first few Y;” functions:

Yo=(4m)""”
YE'= ¥(3/8r)"*sin § e
Y{=(3/4n)"*cos 6
) U (12.5.39)
YE2=(15/32m)"* sin” 6 **
Y& = F(15/87)"* sin 0 cos 9
Y= (5/167)*(3 cos’ 6 — 1)
NE)te that
f Yfm=(—l)m(Y1m)* (12.5.40)

Closely related to the spherical harmonics are the associated Legendre polynomials
P (with 0 <m <) defined by

1,2
Y7o, ¢)=[%+ﬂ_(11)g;_)m')_!] (—1)" é™® P}(cos 6) (12.5.41)

If m=0, PP(cos 8) = P;(cos 0) is called a Legendre polynomial.

The Shape of the Y[' Functions. For large 1, the functions | ¥7"| exhibit many
classical features. For example, | Y} oc|sin’ 8], is almost entirely confined to the x-y
plane, as one would expect of a classical particle with all its angular momentum
pointing along the z axis. Likewise, | Y?| is, for large [, almost entirely confined to
the z axis. Polar plots of these functions may be found in many textbooks.

Exercise 12.5.10. Write the differential equation corresponding to
Llap>=alap)

in the coordinate basis, using the I? operator given in Eq. (12.5.36). We already know B=
mii from the analysis of —i#i(6/6¢ ). So assume that the simultaneous eigenfunctions have
the form

Yam(0, )= P2(0) €™
and show that P satisfies the equation

1 9 d «a m2>
10 nel L \prey=0
(meaesm 0 7 e/
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We need to show that

M) L=ta+n, 120,12,
2) Im <!

We will consider only part (1) and that too for the case m=0. By rewriting the equatio
terms of u=cos 0, show that P2 satisfies

(1-u)

d*pe dP
e 9 Tei|Z)po=0
du du ()

Convince yourself that a power series solution

PO

[
ag!
0
=

I
will lead to a two-term recursion relation. Show that (C,+2/C,)—1 as n—o0. Thus thei
diverges when }u| =1 (6 -0 or x). Show that if a/#=()(/+1);1=0, 1,2, ..., the series
terminate and be either an even or odd function of u The func
P = Pire yw(u) = PP(1) = P (u) are just the Legendre polynomials up to a scale fu
Determine P,, P, and P, and compare (ignoring overall scales) with the Y7 functions.

i
Exercise 12.5.11. Derive Y| starting from Eq.(12.5.28) and normalize it youl
[Remember the (—1)' factor from Eq. (12.5.32).] Lower it to get ¥$ and Y7 and com
with Eq. (12.5.39).

Exercise 12.5.12.% Since L’ and L, commute with TI, they should share a basis
Verify that Y75(—1)'Y7. (First show that §—>7— 6, ¢— ¢+ under parity. Prove the
for Y!. Verify that L_ does not alter the parity, thereby proving the result for all ¥7'.)

Exercise 12.5.13.* Consider a particle in a state described by
y=N(x+y+2z)e ™

where N is a normalization factor.
(1) Show, by rewriting the ¥;*' functions in terms of x, y, z, and r, that

172 .
g (i) x*iy :
Ax) 2 (12!

1/2
Y= (i) z j
4n/ r :

(2) Using this result, show that for a particle described by y above, P(lz=0)=j
P(l,=+h)=1/6=P(l,=—H). !




Exercise 12.5.14. Consider a rotation 6,i. Under this

XX
; y—ycos 0,—~zsin 0,

z—zcos 0,+ ysin 0,
Therefore we must have

w(x, y,z) wr=y(x, ycos 0,—zsin 0., zcos 8,+y sin 6,)

—_—
UIR(8x1)]

Let us verify this prediction for a special case

3 y=Aze /"

which must go into

wr=A(z cos O,—y sin 0,) e/

(1) Expand v in terms of Y7, Y7, ¥i'.

(2) Use the matrix e™***/* to find the fate of y under this rotation.} Check your result
against that anticipated above. [Hint: (1) y~ Y7, which corresponds to

0
1
0

(2) Use Eq. (12.5.42).]

12.6. Solution of Rotationally Invariant Problems

We now consider a class of problems of great practical interest: problems where
Wr, 8, ¢ )= V(r). The Schrodinger equation in spherical coordinates becomes

—ﬁ2(1 é ,0 1@ ] 1 52) J
19,9, Sy S S
[2;1 ot rmean % raneag) T

XWE(T,9,¢)=EWE(T,9,¢) (1261)

Since [H, L]=0 for a spherically symmetric potential, we seek simultaneous eigen-
functions of H, L* and L,:

YEm(T, 0, §) = Reim(r) YI'(6, ¢) (12.6.2)

Feeding in this form, and bearing in mind that the angular part of V is just the L?
operator in the coordinate basis [up to a factor (— #°r*) 7Y, see Eq. (12.5.36)], we get

1 See Exercise 12.5.5.
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{_ﬁ[1 9,0 11+

b :|+ V(r)}REy:EREI (12,0.3
2p

r’or or ¥

Notice that the subscript m has been dropped: neither the energy nor the
function depends on it. We find, as anticipated earlier, the (2/+ 1)-fold deg
of H.

Exercise 12.6.1.* A particle is described by the wave function
V/E(r, 9, ¢) =4 e 7/% (a0=C0nSt)

(1) What is the angular momentum content of the state?

(2) Assuming y ¢ is an eigenstate in a potential that vanishes as r—co, find E. (
leading terms in Schrddinger’s equation.)

(3) Having found E, consider finite r and find ¥(r).

At this point it becomes fruitful to introduce an auxiliary function Uy, d
as follows:

Rg= UEl/r

and which obeys the equation

d? 2;1[ 1(1+1)h2]}
o+ L E- V() - ———=— |t Ug=0
{dr2 W ) 2ur’ &

Exercise 12.6.2.* Provide the steps connecting Eq. (12.6.3) and Eq. (12.6.5).

The equation is the same as the one-dimensional Schrédinger equation
for the following differences:

(1) The independent variable (r) goes from 0 to o and not from —co tg'8

(2) In addition to the actual potential V(r), there is the repulsive centri
barrier, [(I+1)%*/2ur*, in all but the /=0 states.

(3) The boundary conditions on U are different from the one-dimensional
We find these by rewriting Eq. (12.6.5) as an eigenvalue equation

w2 d? I(I+1)h2]
- V(N +—— Uy=D,(r)Ug=EU. 12,
I: o» e (€3] 2‘”2 El () Ug El (



and demanding that the functions Ug be such that D, is Hermitian with respect to
them. In other words, if U; and U, are two such functions, then we demand that

j U,*(D,Uz)dr=[f UZ*(DIU,)dr] E_[ (D, U)*U,dr  (12.6.7a)
0 0

]

This reduces to the requirement

dU. F
(U?‘ =Z_U, dU‘)
dr dr

[s.o}

=0 (12.6.7b)

[

»
Exercise 12.6.3. Show that Eq. (12.6.7b) follows from Eq. (12.6.7a).

Now, a necessary condition for

.

f | Re,|r dr=f |Ugi|* dr

0 0
to be normalizable to unity or the Dirac delta function is that

Uy—0 (12.6.8a)

r—oo

or

Ugy— &~ (12.6.8b)

r—o

the first corresponding to bound states and the second to unbound states. In either
case, the expression in the brackets in Eq. (12.6.7b) vanishes at the upper limit] and
the Hermiticity of D; hinges on whether or not

du, dU,*]
Ur=2-U =0 12.6.9
[ ! dr 2 dr ( )

0
Now this condition is satisfied if

U—>¢, ¢=const (12.6.10)

r—0

t For the oscillating case, we must use the limiting scheme described in Section 1.10.
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If ¢ is nonzero, then

U
R UL
r r

diverges at the origin. This in itself is not a disqualification, for R is still
integrable. The problem with ¢ #0 is that the corresponding total wave func

Y~ Y3
r

does not satisfy Schrédinger’s equation at the origin. This is because of the
V2 (1/r)=—4n8(r) (
the proof of which is taken up in Exercise 12.6.4. Thus unless ¥(r) contains

function at the origin (which we assume it does not) the choice ¢+#0 is unt
Thus we deduce that

UE1__’0 (1

r—0

Exercise 12.6.4.* (1) Show that

1

r?sin 0

SPa-r)y=8(x—x)6(y—y)o(z—-2)= o(r—r)é(0—0)o(¢—9¢")

(consider a test function).
(2) Show that

V(1 /ry=—-4n6%(r)

(Hint: First show that V*(1/r)=0 if r#0. To sec what happens at r=0, consider
sphere centered at the origin and use Gauss’s law and the identity V’¢=V-V¢)§

General Properties of Ug,

We have already discussed some of the properties of Ug; as r—0 or oc. We
try to extract further information on Ug, by analyzing the equation governing{
these limits, without making detailed assumptions about V(r). Consider first the
r—0. Assuming V(r) is less singular than r 2, the equation is dominated by,

I As we will see in 2 moment, /%0 is incompatible with the requirement that y(r)—r~" as r-0. !
the angular part of y has to be Y5=(4z)" "2 ‘
§ Or compare this equation to Poisson’s equation in electrostatics V’¢=—4np. Here p=53(r),1
represents a unit point charge at the origin. In this case we know from Coulomb’s law that ¢=1]



centrifugal barrier:

g2
" I(1+1)
U (12.6.13)

~

We have dropped the subscript E, since E becomes inconsequential in this limit. If
we try a solution of the form

U,~ra

a(a—1)=l(l+l)
or

a=I+1 or(—])

and

—l

U {r’” (regular) (12.6.14)
oy (irregular) o

We reject the irregular solution since it does not meet the boundary condition U)=
0. The behavior of the regular solutions near the origin is in accord with our expecta-
fion that as the angular momentum increases the particle should avoid the origin
more and more.

The above arguments are clearly true only if [#0. If [=0, the centrifugal barrier
is absent, and the answer may be sensitive to the potential. In the problems we will
consider, Uj-o will also behave as A1 with [=0. Although Us(r) -0 as r—0, note
that a particle in the [=0 state has a nonzero amplitude to be at the origin, since
Ro(r) = Uo(r)/r#0 at r=0.

Consider now the behavior of Ug as r—>®. If V(r) does not vanish as r—,
it will dominate the result (as in the case of the isotropic oscillator, for which
V(r)ocrz) and we cannot say anything in general. So let us consider the case where
rV(r)—0 as r—0. At large r the equation becomes

d*Ug_ 2uE
AV _ Py (12.6.15)

! dar’ A

(We have dropped the subscript [ since the answer doesn’t depend on [.) There are
now two cases:

1. E>0; the particle is allowed to escape to infinity classically. We expect Ug to

oscillate as r— 0.
3 E<0: The particle is bound. The region r— is classically forbidden and we

expect Ug to fall exponentially there.

343

ROTATION
INVARIANCE
AND ANGULAR
MOMENTUM



34

CHAPTER 12

Consider the first case. The solutions to Eq. (12.6.15) are of the form

Us=A e +Be ™,  k=QuE/)"

that is to say, the particle behaves as a free particle far from the origin.{ No
might wonder why we demanded that r¥(r)—0 and not simply ¥(r)—0 as r
To answer this question, let us write

UE =f(r) e:{:ikr

and see if f(r) tends to a constant as r—oo. Feeding in this form of Ug int
(12.6.5) we find (ignoring the centrifugal barrier)

2u¥(r) V(r)

S EQik) = /=0

Since we expect f(r) to be slowly varying as r— oo, we ignore f” and find

d_zik _W(r) dr
f k #
S(r)=f(ro) - exp¥F [kl—;:z j' 14(8) dr’:l (124

ro

where ro is some constant. If ¥(r) falls faster than r 7', i.e., rV(r)—0 as r-

can take the limit as r—co in the integral and f(r) approaches a constant as r
If instead ‘

Viry=—

as in the Coulomb problem,§ then

£()=f(ro) exp+ [%;— In (—)]

Yo

and

2
UE(r)~expi[i<kr+£%ln rﬂ (12,

This means that no matter how far away the particle is from the origin, it is
completely free of the Coulomb potential. If V(r) falls even slower than a Co
potential, this problem only gets worse.

1 Although A and B are arbitrary in this asymptotic form, their ratio is determined by the requi
that if Ug is continued inward to r=0, it must vanish. That there is just one free parameter
solution (the overall scale), and not two, is because D, is nondegenerate even for E>0, which i
is due to the constraint Ug (r=0)=0; see Exercise 12.6.5.

§ We are considering the case of equal and opposite charges with an eye on the next chapter.



Consider now the case £ <0. All the results from the £> 0 case carry over with
the change

k—ix,  k=QplE|/R)"?
Thus
g UE——:Ae_'"‘i-BeJ”rr (12.6.18)

Again B/ A is not arbitrary if we demand that Ug continued inward vanish at r=0.
Now, the growing exponential is disallowed. For arbitrary £<0, both ¢ and ¢
will be present in Ug. Only for certain discrete values of E will the ¢ piece be
absent ; these will be the allowed bound state levels. (If 4/B were arbitrary, we could
choose B=0 and get a normalizable bound state for every £<0.)

As before, Eq. (12.6.18) is true only if ¥ (r)—=0. In the Coulomb case we expect
[from Eq. (12.6.17) with k—ix]

2
He Kr
Ug\fCX]f)(ﬂ:ﬁ In r)e;

— (r):tpez/xfiz e"FKr (12619)

When we solve the problem of the hydrogen atom, we will find that this is indeed

the case.
When E <0, the energy eigenfunctions are normalizable to unity. As the operator

Dy(r) is nondegenerate (Exercise 12.6.5), we have

j Ugi(r)Ug(r) dr= OeE
0

and
WEIm(r’ 9, ¢) = RE[(r) Y;n(e, ¢)

obeys
JVJVJV ‘//Elm(ra 0’ ¢)WE’I’m’(r5 09 ¢)r2 dr d§2= 6EE’ 611’ 6mm’

We will consider the case £>0 in a moment.

Exercise 12.6.5. Show that D, is nondegenerate in the space of functions U that vanish
as r—0. (Recall the proof of Theorem 15, Section 5.6.) Note that Ug is nondegenerate even

for E>0. This means that E, /, and m, label a state fully in three dimensions.
-
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The Free Particle in Spherical Coordinates}

If we begin as usual with
VEem(r, 0, ®)=Rg(r)Y7'(0, ¢)

and switch to Ug, we end up with

_2uE
=7

l:d2+k2_l(l+1)

- Ug=0, k*
dr? 7 ] F

Dividing both sides by k%, and changing to p=kr, we obtain

[_di 1(+1)

+ U=U, 12.6,
dpz pz :l ! ! ( i

The variable k, which has disappeared, will reappear when we rewrite the answer
terms of r=p/k. This problem looks a lot like the harmonic oscillator except f
the fact that we have a potential 1/p° instead of p”. So we define operators analogo
to the raising and lowering operators. These are

d I+1
d=—+—" (12.6.21;
dp p
i
and its adjoint ‘
d I+1
dj=——+—= (12.6.21t
dp p

(Note that d/dp is anti-Hermitian.) In terms of these, Eq. (12.6.20) becomes
(@d)U=U, (126.

Now we premultiply both sides by d] to get

dld(diU)=d]U, (12623
You may verify that
did=ddl+, (12.6.24
so that
dydl(dTU)=d]U, (12625

1 The present analysis is a simplified version of the work of L. Infeld, Phys. Rev., 59, 737 (1941).



1t follows that
dlU=c¢, Ut (12.6.26)

where ¢, is a constant. We choose it to be unity, for it can always be absorbed in
the normalization. We see that d T serves as a “‘raising operator” in the index I. Given
U, we can find the others.f From Eq. (12.6.20) it is clear that if /=0 there are two
independent solutions:

Ud(p)=sin p, Ug=—cosp (12.6.27)

% constants in front are chosen according to a popular convention. Now U? is
unacceptable at p=10 since it violates Bq. (12.6.12). If, however, one is considering
the equation in a region that excludes the origin, U £ must be included. Consider
now the tower of solutions built out of U{ and U¢§. Let us begin with the equation

U =dU (12.6.28)

Now, we are really interested in the functions R;= U,/p.§ These obey (from the
above)

PR =d} (PR)

d l+1) '
=|-—+— R]
( o p (pR;)

or

F 1 In Chapter 15, we will gain some insight into the origin of such a ladder of solutions.
© § Actually we want R,=U, /r=KkU,/p. But the factor k may be absorbed in the normalization factors of
Uand R.
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R=(- p)’<— a_) Ry (12.6.29)
pop
Now there are two possibilities for Rp:
Ri= sin p
P
RE=" cos p
P
These generate the functions
1 .
1 d)[si
Ri=j= (—p)’(— d—) (EEI_P) (12.6.30a)
pap/\ p
called the spherical Bessel functions of order /, and
i
1 d\[-
RP=n= (—p)’<— d—> ( cos p) (12.6.30b)
p ap p

called spherical Neumann functions of order .} Here are a few of these functions:

. sin —~Cos
jop) =22, no(p) = —
p
. sin cos —Cos sin
Jp)= zp____p’ n(p)= > p_smp (12.6.31)
p P p p

. 31y 3 cos 3 1 3sin
Jz(P)=<‘3‘*>SmP_ L, nz(p)=—(—3——>cosp~ 20
pp P pp P

As p— oo, these functions behave as

1
Ji— —sin (p - E) (12.6.32)
P p 2
1 l
n——— cos(p —£> (12.6.3)
p—ro0 p 2

i
i
Despite the apparent singularities as p—0, the j;(/) functions are finite and in fact
i

Jilp) —> P

- (2[+—1)” (12.6.33)

1 One also encounters spherical Hankel functions h,=j;+ in, in some problems.



where QI+ D=2+ 1)(2/=1)(2[=3) ... (5)(3)(1). These are just the regular solu-
tions listed in Eq. (12.6.14). The Neumann functions, on the other hand, are singular

QI=1)N
¥ m(p) —2 _@sh (12.6.34)

and correspond to the irregular solutions listed in Eq. (12.6.14).
Free-particle solutions that are regular in all space are then

. WK
3 Vem(r, 0, 9)=j(kNYT(0,¢), E=—— (12.6.35)
X 2u
These satisfy
* 2 2
VEMYVEImT dr dQ =-‘P 5(/( _k,)(S[]' 5,,,,,, (12636)
T
We are using here the fact that
j ikryi(kr)r? arr=21k2 S(k~k') (12.6.37)
0

Exercise 12.6.6.* (1) Verify that Eqs. (12.6.21) and (12.6.22) are equivalent to Eq.
(12.6.20)
(2) Verify Eq. (12.6.24).

Exercise 12.6.7. Verify that j, and j, have the limits given by Eq. (12.6.33).

Exercise 12.6.8.* Find the energy levels of a particle in a spherical box of radius r, in
the /=0 sector.

Exercise 12.6.9.* Show that the quantization condition for /=0 bound states in a spher-
ical well of depth —V, and radius 7 is

k' /xk=—tank'r,

where k' is the wave number inside the well and ix is the complex wave number for the
exponential tail outside. Show that there are no bound states for Vo< m*#%/8urs. (Recall
Exercise 5.2.6.)

Comnection with the Solution in Cartesian Coordinates

If we had attacked the free-particle problem in Cartesian coordinates, we would
have readily obtained

1 . P RK
X, y,2)=——=e?" E="=—_"_ 12.6.38
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Consider now the case which corresponds to a particle moving along the z axis with
momentum p. As

p°r/fi=(prcos 8)i=krcos 8

we get
ikrcos @ h 2 k2

3 0’ =——_———, E
WE(r ¢) (2”h)3/2 2/1

(1
It should be possible to express this solution, describing a particle moving in

direction with energy E=#°k"/2u, as a linear combination of the functions
which have the same energy, or equivalently, the same k:

© !
Mel=y ¥ Cli(kr) Y70, ¢) (126.

1=0m=—1

Now, only terms with m=0 are relevant since the left-hand side is independent
¢. Physically this means that a particle moving along the z axis has no angular
momentum in that direction. Since we have

1/2
2/1+1
0= icoso)
4
1/2
@ +1
gireost = Z Cji(kr)P(cos 0), C= C?'(zl >

= T

It can be show that
C=i'2l+1)

so that

zkrcosG Z i (2l+ l)j[(kr)P1(COS 9) (12641)

This relation will come in handy when we study scattering. This concludes our study
of the free particle.

Exercise 12.6.10. (Optional). Verify Eq. (12.6.41) given that
1
1)) J‘ Pi(cos 8)P(cos ) d(cos 8)=[2/(21+ D6y
-1

_ 1 -y
@) P =5 =g
my!!

— 2m = —_— e
@ L YT

Hint: Consider the limit kr—0 after projecting out C;.



‘ We close this section on rotationally invariant problems with a brief study of
the isotropic oscillator. The most celebrated member of this class, the hydrogen

atom, will be discussed in detail in the next chapter.

e Isotropic Oscillator

The isotropic oscillator is described by the Hamiltonian

Pi+P;+ P! 1
H="""2""C 4o’ (X*+Y’+Z?%
2u 2

f we write as usual

Y Eim =M Y;n(e, ¢)

r

we obtain the radial equation

d? zu[ 1, l(l+1)h2]}
R 2 [ UR=0
I {arr2 Pl T L I |

As r— o0, we find

U~ e—yz/2

where

is dimensionless. So we let
U(y)=e""u(y)

and obtain the following equation for v(y):

y2

+
v”—2yv’+[2/1—l—l(l 1)j|v=0, A:h—E—

(12.6.42)

(12.6.43)

(12.6.44)

(12.6.45)

(12.6.46)

(12.6.47)

(12.6.48)

It is clear upon inspection that a two-term recursion relation will obtain if a power-

series solution is plugged in. We set

u(y)=y"'Y Gy

n=0

(12.6.49)

where we have incorporated the known behavior [Eq. (12.6.14)] near the origin.
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By going through the usual steps (left as an exercise) we can arrive at
following quantization condition:

E=(2k+1+3/2)ho, k=0,1,2,... (12.6

If we define the principal quantum number (which controls the energy)

n=2k+I (12.6.
we get
E=(n+3/2)ho (12.6.52)
At each n, the allowed [/ values are
I=n—2k=n,n-2,...,10r0 (12.6.53)

Here are the first few eigenstates:

n=0 I=0 m=0

n=1 [=1 m==x1,0

n=2 [=0,2 m=0; £2, £1,0

n=3 [=1,3 m=+%1,0; £3, £2, £1,0

Of particular interest to us is the fact that states of different / are degenerate. The
degeneracy in m at each / we understand in terms of rotational invariance. The
degeneracy of the different / states (which are not related by rotation operators or the
generators) appears mysterious. For this reason it is occasionally termed accidenta!
degeneracy. This is, however, a misnomer, for the degeneracy in / can be attributed
to additional invariance properties of H. Exactly what these extra invariances or
symmetries of H are, and how they explain the degeneracy in /, we will see in Chapter
15.

Exercise 12.6.11.* (1) By combining Eqs. (12.6.48) and (12.6.49) derive the two-term
recursion relation, Argue that Co#0 if U is to have the right properties near y =0. Derive the
quantizations condition, Eq. (12.6.50).

(2) Calculate the degeneracy and parity at each n and compare with Exercise 10.2.3,
where the problem was solved in Cartesian coordinates.

(3) Construct the normalized eigenfunction y,,, for n=0 and 1. Write them as linear
combinations of the n=0 and n=1 eigenfunctions obtained in Cartesian coordinates.

iR



13

The Hydrogen Atom

13.1. The Eigenvalue Problem

We have here a two-body problem, of an electron of charge —e and mass m,
and a proton of charge +e and mass M. By using CM and relative coordinates and
working in the CM frame, we can reduce the problem to the dynamics of a single
particle whose mass g =mM/(m+ M) is the reduced mass and whose coordinate r
is the relative coordinate of the two particles. However, since m/M ~1/2000, as a
result of which the relative coordinate is essentially the electron’s coordinate and the
reduced mass is essentially m, let us first solve the problem in the limit M—oc0. In
this case we have just the electron moving in the field of the immobile proton. At a
later stage, when we compare the theory with experiment, we will sce how we can
easily take into account the finiteness of the proton mass.

Since the potential energy of the electron in the Coulomb potential

i o=e/r (13.1.1)
que to the proton is V'=—e?/r, the Schrédinger equation
d*> 2m e I+ 1)h2}}
—+—S | E+——————— | Ug=0 13.1.2
{dr2 # [ r 2mr? E ( )

, determines the energy levels in the rest frame of the atom, as well as the wave
! functions

Ug(r)
r

Vem(r, 0, §)=Re(r) Yi'(6, ¢)= Y76, ¢) (13.1.3)

It is clear upon inspection of Eq. (13.1.2) that a power series ansatz will lead
to a three-term recursion relation. So we try to factor out the asymptotic behavior.

11t should be clear from the context whether m stands for the electron mass or the z component of
angular momentum. 353
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We already know from Section 12.6 that up to (possibly fractional) powers
[Eq. (12.6.19)],

U ~ exp[—(2mW/#*)"/r] (13.
where
W=—E

is the binding energy (which is the energy it would take to liberate the electron) an
that

Ug ~ r (13.1.9)
Equation (13.1.4) suggests the introduction of the dimensionless variable l
p=02mW/i*)*r (13.1.6)

and the auxiliary function vg defined by
Up=e"* vg (13.

The equation for v is then

2 2 +
d—‘z’—zf’h[ﬂ—l(l 21)}v=0 (13.18)
dp~ dp L p p
where
A=(Qm/RW)/? (13.19)

and the subscripts on v are suppressed. You may verify that if we feed in a series
into Eq. (13.1.8), a two-term recursion relation will obtain. Taking into account the
behavior near p=0 [Eq. (13.1.5)] we try

ve=p"" Y Gpf (13.1.10)

k=0 -

and obtain the following recursion relation between successive coefficients:

Crrr_ —eA+2(k+1+1) (131
Ce  (k+I1+2D(k+I1+1)—1(1+1) 3
The Energy Levels
Since
C 2
Shr1_ 4 (13.1.12)
C, =k



is the behavior of the series p™ *, and would lead to U~e ™ v~p™ e e ~p™ e”
as p—o0, we demand that the series terminate at some k. This will happen if

EA=2(k+I+1) (13.1.13)

or [from Eq. (13.1.9)]

4

A A,
2k +1+1)

k=0,1,2,...: [=0,1,2,... (13.1.14)

In terms of the principal quantum number

i n=k+i+1 (13.1.15)
the allowed cnergies are
E=T"C o123 (13.1.16)
n 2h2n2’ g Ly Ty o ..

and at each # the allowed values of / are, according to Eq. (13.1.15),
I=n—k—-1=n—-1,n-2,...,1,0 (13.1.17)

That states of different / should be degenerate indicates that H contains more symmet-
ries besides rotational invariance. We discuss these later. For the present, let us note
that the degeneracy at each » is

S Q) =r? (13.1.18)

=0

It is common to refer to the states with /=0, 1,2,3,4,...ass,p,d, f, g, h, . . . states.
In this spectroscopic notation, 1s denotes the state (n=1, /=0); 25 and 2p the /=0
and /=1 states at n=2; 3s, 3p, and 3d the /=0, 1, and 2 states at »=3, and so on.
No attempt is made to keep track of m.

It is convenient to employ a natural unit of energy, called a Rydberg (Ry), for
measuring the energy levels of hydrogen:

Ry=— (13.1.19)
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E4 O e
-msE — — — —n:=4
-9 — — —n=3
-i/4}F — —n=2
Figure 13.1. The first few eigenstates of hydrogen. The enetg
is measured in Rydbergs and the states are labelled in the spel
S " LY} troscopic notation. i
in terms of which i
—Ry
E,=— (13.1.20
n
Figure 13.1 shows some of the lowest-energy states of hydrogen. $
F

The Wave Functions

Given the recursion relations, it is a straightforward matter to determine the
wave functions and to normalize them. Consider a given n and /. Since the series in
Eq. (13.1.10) terminates at

k=n—1-1 (13.1.21)

the corresponding function v, is p'"' times a polynomial of degree n—I—1. This
polynomial is called the associated Laguerre polynomial, L2 (2p).1 The corre-
sponding radial function is

Ru(p)~e? 'Ly 1(2p) (13.1.22)
Recall that

<2m W)l/z {2m< me* ):ll/z .
=] —— r=| —| —=
PR\ # \ 27

2
me

P L) = (1)@ dx"Y o,  Ly=eX(d"/dx)(eX).



In terms of the length

o= (13.1.24)

called the Bohr radius, which provides the natural distance scale for the hydrogen
atom,

I
2
R(r)~e™"/"® (L) Lﬁ’f/‘_l(—r—> (13.1.25)
nag nag
As r—o0, L will be dominated by the highest power, »~'"', and
Ry ~ (r)""'e ™ (independent of /) (13.1.26)

(If I=n—1, this form is valid at all r since L3'*' is a constant.) Equation (13.1.26)

was anticipated in the last chapter when we considered the behavior of Ug as r— oo,
in 2 Coulomb potential (see Exercise 13.1.4).
The following are the first few normalized eigenfunctions, W g, = W,y :

1/2
— l —r/ap
Vipo=| 3 e
Qo

| 172
r

— o e—r/Zao

Vaoo (32na3> ( ao)

e (13.1.27)
=—— | —ecos@
Va0 (327:(13) o
1 2 r
Yol x1= :F<647ra(3)> a—o e 7% gin § e

Exercise 13.1.1. Derive Egs. (13.1.11) and (13.1.14) starting from Egs. (13.1.8)-(13.1.10).
Exercise 13.1.2. Derive the degeneracy formula, Eq. (13.1.18).
Exercise 13.1.3. Starting from the recursion relation, obtain ¥, (normalized).

Exercise 13.1.4. Recall from the last chapter [Eq. (12.6.19)] that as r—co,
Us~(r)™"/*" ¢7*" in a Coulomb potential ¥'=—¢’/r [k = (2mW/#*)'/?]. Show that this agrees
with Eq. (13.1.26).
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Let us explore the statement that g, provides a natural length scale for th!
hydrogen atom. Consider the state described by

Wnn_1moce ™0 YT (0, @) (13.1.28)

Let us ask for the probability of finding the electron in a spherical shell of radius r
and thickness dr:

J P(x)r* dr dQoce ™ v dr
Q

The probability density in r reaches a maximum when

d

dr ( —2r/nagy Zn) 0

or

r=na, (13.1.30)

When n=1, this equals a,. Thus the Bohr radius gives the most probable value of
r in the ground state and this defines the “size” of the atom (to the extent one may
speak of it in quantum theory). If n>1 we see that the size grows as n°, at least in
the state of /=n—1. If /#n—1, the radial function has n —/— 1 zeros and the density
in r has several bumps. In this case, we may define the size by <r>.} It can be shown,
by using properties of L', that =

<r>nlm=%[3n2_l(l+l)] (13131)

Rather than go through the lengthy derivation of this formula let us consider the
following argument, which indicates that the size grows as n’a,. In any eigenstate

(HYy=E={(T)+{(V>=(P*/2m>—{e*/r) (13.1.'32)
It can be shown (Exercise 13.1.5) that ’
(Ty=—3(V) (13.1.33)

which is just the quantum version of the classical virial theorem, which states that
if '=c/*, then the averages 7 and U are related by

T==V

NS R

£

1 Even though r represents the abstract operator (X>+ Y>+ Z%)'/? only in the coordinate basis, we shall
use the same symbol to refer to it in the abstract, so as to keep the notation simple.



It follows that
E=3(Vy==3(/r>
Now, in the state labeled by n,

4
—me —e2

n
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(13.1.35)

25 2agh?

from which it follows that

<1> =L2 (13.1.36)
r don

54
_,_¢ —
<y \r

the two are of the same order of magnitude (see Exercise 9.4.2) and we infer that

Although

(ryn~nlag (13.1.37)

which agrees with the result Eq. (13.1.31). (One must be somewhat cautious with
statements like (1/r>~1/{r). For example, it is not true in an s state that {1/r*>~1/
), since (1/¢* is divergent while 1/{r*) is not. In the present case, however, {1/
r> is well defined in all states and indeed <1/r)> and 1/{r) are of the same order of
magnitude.)

This completes our analysis of the hydrogen spectrum and wave functions.
Several questions need to be answered, such as (1) What are the numerical values
of E,, a, etc.? (2) How does one compare the energy levels and wave functions
deduced here with experiment?

These questions will be taken up in Section 13.3. But first let us address a
question raised earlier: what is the source of the degeneracy in / at each n?

Exercise 13.1.5.* (Virial Theorem). Since |n, I, m> is a stationary state, (Q) =0 for any
Q. Consider Q=R"P and use Ehrenfest’s theorem to show that (T =(—1/2){V> in the state
In, I, m).

13.2. The Degeneracy of the Hydrogen Spectrum

The hydrogen atom, like the oscillator, exhibits “accidental degeneracy.”
Quotation marks are used once again, because, as in the case of the oscillator, the
: degeneracy can be explained in terms of other symmetries the Hamiltonian has
besides rotational invariance. Now, we have seen that the symmetries of H imply
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the conservation of the generators of the symmetries. Consequently, if there is an
extra symmetry (besides rotational invariance) there must be some extra conserved
quantities (besides angular momentum). Now it is well known classically that the
Coulombi potential is special (among rotationally invariant potentials) in that it
conserves the Runge-Lenz vector

n=-———r (13.21)

The conservation of n implies that not only is the orbit confined to a plane perpendic-
ular to 1 (as in any rotationally invariant problem) it is also closed (Exercise 13.2.1).!
In quantum theory then, there will be an operator N which commutes with H:

[N,H]=0 (13.22
and is given by$§

&R

—_— 13.23
X2+ Y2+ 2ZH)"? (1323

1
=—[PxL—-LxP]-
2m

We have seen that the conservation of L implies that [L., H]= 0, which means
that we can raise and lower the m values at a given [ without changing the energy.
This is how the degeneracy in m is “explained” by rotational invariance.

So it must be that since [N, H] =0, we must be able to build some operator out
of the components of N, which commutes with H and which raises / by one unit.
This would then explain the degeneracy in / at each n. Precisely what this operator
is and how it manages to raise / by one unit will be explained in Section 15.4, devoted
to the study of “accidental” degeneracy. You will also find therein the explanation
of the degeneracy of the oscillator.

-

Exercise 13.2.1. Let us see why the conservation of the Runge-Lenz vector n implies
closed orbits.

(1) Express n in terms of r and p alone (get rid of I).

(2) Since the particle is bound, it cannot escape to infinity. So, as we follow it from some
arbitrary time onward, it must reach a point r.., where its distance from the origin stops
growing, Show that :

3

2
n=rmax<2E+ ¢ >

V'max

1 Or generally any 1/r potential, say, gravitational.
§Since [P,L]#0, we have used the symmetrization rule to construct N from n, ie,
pxIo3[(PxL)+(PxL)"|=3[PxL—LxP] (verify this).



o

at this point. (Use the law of conservation of energy to eliminate p°.) Show that, for similar
reasons, if we wait some more, it will come 10 Fmin, where

2
n=rmin<2E+ ¢ )

F'min

Thus Ipax and I, are parallel to each other and to n. The conservation or constancy of n
implies that the maximum (minimum) separation is always reached at the same point
Tmax(Tmin)» 1.6-, the orbit is closed. In fact, all three VeCtors I'imax, Fmin, and m are aligned with
the major axis of the ellipse along which the particle moves; n and Iy, are parallel, while n
and r,,., are antiparallel. (Why?) Convince yourself that for a circular orbit, n must and does
vanish.

13.3. Numerical Estimates and Comparison with Experiment

In this section we (1) obtain numerical estimates for various quantities such as
the Bohr radius, energy levels, etc.; (2) ask how the predictions of the theory are
actually compared with experiment.

Numerical Estimates

Consider first the particle masses. We will express the rest energies of the particles
in million-electron volts or MeV:

me?~0.5 Mev (0.511 is a more exact value) (13.3.1)
MZ=1000 MeV  (938.3)% (13.3.2)
m/M=~1/2000 (1/1836)% (13.3.3)

Consequently the reduced mass  and electron mass m are almost equal:

n= ~——=m (13.3.4)

as are the relative coordinate and the electron coordinate.
Consider now an estimate of the Bohr radius

ap=H>/mé’ (13.3.5)

1 A more exact value.
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To find this we need the values of % and e. It was mentioned earlier that
fi=1.054x 1077 erg sec

A more useful thing to remember for performing quick estimates ist

fic~2000 eV A (1973.3) (1334

where 1 angstrom (A)=10"" cm. The best way to remember ¢” is through the fire-

structure constant.
S | 1
a=e—:—~(—— (1)
fic 137\137.04

This constant plays a fundamental role in quantum mechanical problems involving
electrodynamics. Since it is dimensionless, its numerical value has an absolute signifi
cance: no matter what units we use for length, mass, and time, a will be 1/137,
Thus, although no one tries to explain why ¢=3 x 10'® ¢cm /sec, several attempts have
been made to arrive at the magic figure of 1/137. Since it is a God-given number
(independent of mortal choice of units) one tries to relate it to fundamental numbers
such as 7, e, €, 7°, the number of space-time dimensions, etc.
Anyway, returning to our main problem, we can now estimate ay

w_ e (E)ZQM@ A=0554  (0.53)

p——=—
°” me? e 0.5x 10°

me* mc’
Consider next the energy levels
,=—Ry/n’

We estimate

Ry— m_e“=m_cz(e_2)2

2 2 \kc
25%10°
:0~(—15§7)12—0~ eV~133eV  (13.6)

So, using the more accurate value of Ry,

_-136

2
n

E, eV

1 Many of the tricks used here were learned from Professor A. Rosenfeld at the University of California
Berkeley.



The electron in the ground state needs 13.6 eV to be liberated or ionized. One may
imagine that it is 13.6 eV down the infinitely deep Coulomb potential.
Let us digress to consider two length scales related to ao. The first

Qe =—7 —=—=4, (13.3.8)

is called the Compton wavelength of the electron and is 137 times smaller than the
Bohr radius. What does 2, represent? In discussing the nuclear force, it was pointed
out that the Compton wavelength of the pion was the distance over which it could
be exchanged. It can also be defined as the lower limit on how well a particle can
be localized. In the nonrelativistic theory we are considering, the lower limit is zero,
since we admit position eigenkets [x). But in reality, as we try to locate the particle
better and better, we use more and more energetic probes, say photons to be specific.
To locate it to some AX, we need a photon of momentum

¥ ap
AX

Since the photon is massless, the corresponding energy is

AE~£6_
AX

in view of Einstein’s formula E*=c*p’ + m’c*.
If this energy exceeds twice the rest energy of the particle, relativity allows the
production of a particle-antiparticle pair in the measurement process. So we demand

AE<2mc?

A
—cschz
AX

or

If we attempt to localize the particle any better, we will see pair creation and we will
have three (or more) particles instead of the one we started to locate.

In our analysis of the hydrogen atom, we treated the electron as a localized
point particle. The preceding analysis shows that this is not strictly correct, but it
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also shows that it is a fair approximation, since the “fuzziness” or “size” of the
electron is ¢ times smaller than the size of the atom, aq

h 1
/mcza

do 137

Had the electric charge been 10 times as big, @ would have been of order unity, ‘#
the size of the electron and the size of its orbit would have been of the same o
and the point particle approximation would have been untenable. Let us note that

1 1
A= ay~05x—A~x—A~4x1072A (]
137 250 &

If we multiply 4. by a we get another length, called the classical radius of the electron:
re=al,=——=—~3x10"A (13.39)

If we imagine the electron to be a spherical charge distribution, the Coulomb energy
of the distribution (the energy it takes to assemble it) will be of the order é'/r,,
where r, is the radius of the sphere. If we attribute the rest energy of the electron to
this Coulomb energy, we arrive at the classical radius. In summary,

20 _a’ Z’e _a’ ro
B4 G4 (54 :
2 2 2 1

Let us now return to the hydrogen atom. The mnemonics discussed so far are
concerned only with the numbers. Let us now consider mnemonics that help us
remember the dynamics. These must be used with caution, for they are phrased in
terms not allowed in quantum theory.

The source of these mnemonics is the Bohr model of the hydrogen atom. About
a decade or so prior to the formulation of quantum mechanics as described in this
text, Bohr proposed a model of the atom along the following lines. Consider a
particle of mass m in V(r)=—¢’/r, moving in a circular orbit of radius r. The
dynamical equation is

2 2
muv e
=< (13.3.10)
r r
or
2
m=5 (133.11)



Thus any radius is allowed if r satisfies this equation. It also follows that any energy 365

is allowed since THE
HYDROGEN
1 2 2 ATOM
E=_mv2—e—=—e—=—lmv2 (13.3.12)
2 r 2 2

Bohr conjectured that the only allowed orbits were those that had integral
angular momentum in units of #:

mor=nh (13.3.13)

Feeding this into Eq. (13.3.11) we get

€
m2r2 r
or
hz
r=n’—=n’a (13.3.14)
me
and .

& & (1)
E=——=——"15 13.3.15
', 2r 2ao " ¢ )

Thus, if you ever forget the formula for aq or E,, you can go back to this model for
the formulas (though not for the physics, since it is perched on the fence between
classical and quantum mechanics; it speaks of orbits, but quantizes angular momen-
tum and so on). The most succinct way to remember the Bohr atom (i.e., a mnemonic
for the mnemonic) is the equation

a=p (13.3.16)

where B is the velocity of the electron in the ground state of hydrogen measured in
units of velocity of light (8=v/c). Given this, we get the ground state energy as

1

1 1 1
E = ——m*=——mc(v/c 2= ——mc® 2= ——mcia’
=73 5 (v/c) 5 B 5

21\? 4
=_lmcz(e_> __me (133.17)
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Given this, how could one forget that the levels go as nie.,

B,
n

E,=

If we rewrite E, as —e?/2a,, we can get the formula for a,. The equation a = f also
justifies the use of nonrelativistic quantum mechanics. An equivalent way (which
avoids the use of velocity) is Eq. (13.3.17), which states that the binding energy is
~(1/137)* times the rest energy of the electron.

Exercise 13.3.1.* The pion has a range of 1 Fermi=10"" A as a mediator of nuclkar
force. Estimate its rest energy.

Exercise 13.3.2.* Estimate the de Brogliec wavelength of an electron of kinetic energy
200eV. (Recall A=2n#/p.)

Comparison with Experiment

Quantum theory makes very detailed predictions for the hydrogen atom. Letus
ask how these are to be compared with experiment. Let us consider first the energy
levels and then the wave functions. In principle, one can measure the energy levels
by simply weighing the atom. In practice, one measures the differences in energy
levels as follows. If we start with the atom in an eigenstate |nim), it will stay that
way forever. However, if we perturb it for a time 7, by turning on some external
field (i.e., change the Hamiltonian from H°, the Coulomb Hamiltonian, to H+H')
its state vector can start moving around in Hilbert space, since |nlm) is not a station.
ary state of H’+ H'. If we measure the energy at time ¢> 7, we may find it corre-
sponds to another state with n' #n. One measures the energy by detecting the photon
emitted by the atom. The frequency of the detected photon will be

E—-E,
O = 13
P (133.08)
Thus the frequency of light coming out of hydrogen will be
Ry ( 11 )
' T -t
h n2 n/Z
Ry( 1 1 )
=—|—=—-— 13319
# n12 n2 ( )

For a fixed value n'=1,2,3, ..., we obtain a family of lines as we vary n. These
families have in fact been seen, at least for several values of n'. The n'=1 famili i



called the Lyman series (it corresponds to transitions to the ground state from the
upper ones):

: Ry/(1 1)
=== 13.3.2
Q O h(l > (13.3.20)

The #'=2 family is called the Balmer series and corresponds to transitions to the
states |2Im) from n=3,4, ..., etc. The n' =3 family called the Paschen series, etc.
Let us estimate the wavelength of a typical line in the Lyman series, say the one
corresponding to the transition n=2-n'=1:

13.5eV< 1)
W= 1——
# 4

:Eev
#

The wavelength is estimated to be

dre 2
A= (hey~1200 4
0] 10

A more refined estimate gives a value of 1216 A, in very good agreement with
experiment. Equally good is the agreement for all other observed lines. However,
there are, in all cases, small discrepancies. Much of these may be explained by
corrections that are calculable in theory. First we must correct for the fact that the
proton is not really immobile; that we have here a two-body problem. As explained
in Chapter 10, this is done by writing Schrédinger’s equation for the relative (and
not electron) coordinate and working in the CM frame. This equation would differ
from Eq. (13.1.2) only in that m would be replaced by u. This in fact would be the
only change in all the formulas that follow, in particular Eq. (13.1.16) for the energy
levels. This would simply rescale the entire spectrum by a factor u/m= M /(M +m),
which differs from 1 by less than a tenth of a percent. This difference is, however,
observable in practice: one sees it in the difference between the levels of hydrogen
and deuterium (whose nucleus has a proton and a neutron).

Then there is the correction due to the fact that the kinetic energy of the electron
is not 3mv*=p?/2m in Einstein’s theory, but instead mc*[(1~v*/c*)~"*— 1), which
is the difference between the energy at velocity v and the energy at rest. The 2muv*
term is just the first in the power series expansion of the above, in the variable v*/
¢ In Chapter 17 we will take into account the effect of the next term, which is
—3mv4/8c2, or in terms of the momentum, —3p4/ 8m>c2. This is a correction of order
v*/c? relative to the p>/2m piece we included, or since v/c~a, a correction of order
o* relative to main piece. There are other corrections of the same order, and these
go by the name of fine-structure corrections. They will be included (in some approxi-
mation) in Chapter 17. The Dirac equation, which we will not solve in this book,
takes into account the relativistic corrections to all orders in v/c. However, it too
doesn’t give the full story; there are tiny corrections due to quantum fluctuations of
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the electromagnetic field (which we have treated classically so far). These corrections
are calculable in theory and measurable experimentally. The agreement between
theory and experiment is spectacular. It is, however, important to bear in mind that
all these corrections are icing on the cake; that the simple nonrelativistic Schrodinger
equation by itself provides an excellent description of the hydrogen spectrum. (Much
of the present speculation on what the correct theory of elementary particles is will
be put to rest if one can come up with a description of these particles that is half as
good as the description of the hydrogen atom by Schrédinger’s equation.)

Consider next the wave functions. To test the predictions, one once again relies
on perturbing the system. The following example should give you a feeling for how
this is done. Suppose we apply an external perturbation H' for a short time &. During
this time, the system goes from |nlm) to

t

Iw(6)>=[1—% (H°+H‘)]|nlm>

. . 1
laE,,+z£H )|nlm>
/] #

=|nlm>—<

The probability of it being in a state |n'l'm’) (assuming |#'l'm") is different from
|rlm)) is &

2

< I'ml |y (e))]*=

—% n'l'm'| H \nlm)

Thus quantum theory can also determine for us the rate of transition to the state
|n'l'm’>. This rate is controlled by the matrix element {n'l’m'|H'|nlm}, which i§
coordinate space, will be some integral over )%, and y,;,, with H' sandwiched
between them. The evaluation of the integrals entails detailed knowledge of the wave
functions, and conversely, agreement of the calculated rates with experiment is a
check on the predicted wave functions. We shall see a concrete example of this when
we discuss the interaction of radiation with matter in Chapter 18.

Exercise 13.3.3. Instead of looking at the emission spectrum, we can also look at the
absorption spectrum of hydrogen. Say some hydrogen atoms are sitting at the surface of the
sun. From the interior of the sun, white light tries to come out and the atoms at the surface
absorb what they can. The atoms in the ground state will now absorb the Lyman series and
this will lead to dark lines if we analyze the light coming from the sun. The presence of these
lines will tell us that there is hydrogen at the surface of the sun. We can also estimate the
surface temperature as follows. Let 7 be the surface temperature. The probabilities P(n=1)
and P(n=2) of an atom being at n=1 and n=2, respectively, are related by Boltzmann’s
formula

P(n=2)
P(n=1)

=4 e*(Ez— Ey)/kT

where the factor 4 is due to the degeneracy of the n=2 level. Now only atoms in n=2 can
produce the Balmer lines in the absorption spectrum. The relative strength of the Balmer and



Lyman lines will tell us P(n=2)/P(n=1), from which we may infer 7. Show that for 7=
6000 K, P(n=2)/P(n=1) is negligible and that it becomes significant only for T~ 10 K. (The
Boltzmann constant is k>~9x 10"°eV/K. A mnemonic is kT~35eV at room temperature,
T=300K.)

13.4. Multielectron Atoms and the Periodic Table

It is not possible to treat multielectron atoms analytically even if we treat the
nucleus as immobile. Although it is possible, in principle, to treat an arbitrarily
complex atom by solving the exact Schrodinger equation numerically, a more practi-
cal method is to follow some approximation scheme. Consider the one due to Hartree.
Here one assumes that each electron obeys a one-particle Schrodinger equation
wherein the potential energy ¥'=—e¢ (r) is due to the nucleus and the other electrons.
In computing the electronic contribution to ¢(r), each electron is assigned a charge
distribution which is (—e) times the probability density associated with its wave
function. And what are the wave functions? They are the eigenstates in the potential
¢(r)! To break the vicious circle, one begins with a reasonable guess for the potential,
call it ¢o(r), and computes the allowed energy eigenstates. One then fills them up in
the order of increasing energy, putting in just two electrons in each orbital state,
with opposite spins (the Pauli principle will not allow any more)] until all the
electrons have been used up. One then computes the potential ¢,(r) due to this
electronic configuration.§ If it coincides with ¢o(r) (to some desired accuracy) one
stops here and takes the configuration one got to be the ground state of the atom.
If not, one goes through one more round, this time starting with ¢,(r). The fact that,
in practice, one soon finds a potential that reproduces itself, signals the soundness of
this scheme.

What do the eigenstates look like? They are still labeled by (nlm) as in hydrogen,
with states of different m degenerate at a given n and /. [This is because ¢(r) is
rotationally invariant.] The degeneracy in / is, however, lost. Formally this is because
the potential is no longer 1/r and physically this is because states with lower angular
momentum have a larger amplitude to be near the origin and hence sample more of
the nuclear charge, while states of high angular momentum, which are suppressed
at the origin, see the nuclear charge shielded by the electrons in the inner orbits. As
a result, at each n the energy goes up with /. The “radius” of each state grows with
n, with a slight dependence on /. States of a given n are thus said to form a shell
(for, in a semiclassical sense, they may be viewed as moving on a sphere of radius
equal to the most probable value of r). States of a given / and n are said to form a
subshell.

Let us now consider the electronic configurations of some low Z (Z is the nuclear
charge) atoms. Hydrogen (‘H) has just one electron, which is in the 1s state. This
configuration is denoted by 1s'. Helium (*He) has two electrons in the 1s state with
opposite spins, a configuration denoted by 15°. *He has its n=1 shell filled. Lithium
(Li) has its third electron in the 2s state, i.e., it is in the configuration 1s°2s'. (Recall

{ In this discussion electron spin is viewed as a spectator variable whose only role is to double the states.
This is a fairly good approximation.
§$If necessary, one averages over angles to get a spherically symmetric ¢.
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k
that the s state is lower than the p state.) We keep going this way through beryllum
(“Be), boron (°B), carbon (°C), nitrogen ('N), oxygen (*0), and fluorine (°F), i
neon ('°Ne). Neon is in the configuration 15°25°2p%, i.e., has its n=2 shell filled.
next element, sodium (''Na), has a solitary electron in the 3s state. The 3s and
subshells are filled when we get to argon ('®Ar). The next one, potassium ("°K)
its 19th electron in the 4s and not 3d state. This is because the growth in energy
to a change in » from 3 to 4 is less than the growth due to change in / from 2
at n= 3. This phenomenon occurs often as we move up in Z. For example, in t
“rare earth” elements, the 6s shell is filled before the 4f shell.

Given the electronic configurations, one can anticipate many of the chemicaj
properties of the elements. Consider an element such as '®Ne, which has a closed
outer shell. Since the total electronic charge is spherically symmetric
(IR.*Y. _ 1Y7}? is independent of 0 and ¢), it shields the nuclear charge very
effectively and the atom has no significant electrostatic affinity for electrons in other
atoms. If one of the electrons in the outer shell could be excited to a higher level
this would change, but there is a large gap in energy to cross. Thus the atom is rarely
excited and is chemically inert. On the other hand, consider an element like "Na.
which has one more electron, which occupies the 3s state. This electron sees a charg
of +e when it looks inward (the nuclear charge of 11 shielded by the 10 electrons
in the n=1 and 2 shells) and is thus very loosely bound. Its binding energy is 5.1 ¢V
compared to an n=2 electron in Ne, which has a binding energy of 21.6eV. If "N
could get rid of this electron, it could reach a stable configuration with a closed n=
2 shell. If we look one place to the left (in Z) of '*Ne, we see a perfect acceptor for
this electron: we have here °F, whose n=2 shell is all full except for one electron
So when ''"Na and °F get together, Na passes on its electron to F and the system as
a whole lowers its energy, since the binding energy in F is 17.4 V. Having carried
out the transfer, the atoms cannot part company, for they have now become charged
ions, Na™ and F~, which are held together by electrostatic attraction, called the ionic
bond and form the NaF molecule.

Once we grasp that the chemical behavior is dictated by what is happening in
the outermost shell, we can see that several elements will have similar chemical
properties because they have similar outer shells. For example, we expect all elements
with filled outer shells to be chemically inert. This is true. It is also true that some
elements with filled subshells are also inert, such as "*Ar, in which just the 3s and 3
subshells are filled. The origin of this inertness is the same as in the case with filled
shells: a spherically symmetric electronic charge distribution and a large excitation
energy. If we move one place to the right of the inert elements, we meet those that
behave like Na, i.e., eager to give up an electron, while if we move one place to the
left, we meet the likes of F, eager to accept an electron. If we move two places to
the left, we see the likes of oxygen, which want two electrons, while two places to
the right we have elements like magnesium, which want to get rid of two electrons,
It follows that as we move in Z, we see a certain chemical tendency over and over
again. This quasiperiodic behavior was emphasized in 1869 by Mendeleev, who
organized the elements into a periodic table, in which the elements are arranged into
a matrix, with all similar elements in the same column. As we go down the first
column, for example, we see H, Li, Na, etc., i.e., elements with one electron to spare.
In the last column we see the inert elements, He, Ne, etc. Given the maxim that
happiness is a filled outer shell, we can guess who will interact with whom. For




instance, not only can Na give its electron to F, it can give to Cl, which is one shy
of a filled 3p subshell. Likewise F can get its electron from K as well, which has a
lone electron in the 4s state. More involved things can happen, such as the formation
of H,0 when two H atoms get together with an oxygen atom, forming the covalent
bond, in which each hydrogen atom shares an clectron with the oxygen atom. This
way all three atoms get to fill their outer shells at least part of the time.

There are many more properties of elements that follow from the configuration
of the outer electrons. Consider the rare earth elements, 8Ce through "'Lu, which
have very similar chemical properties. Why doesn’t the chemical behavior change
with Z in this range? The answer is that in these elements the 6s subshell is filled
and the 4f subshell, deep in the interior (but of a higher energy), is being filled. Since
what happens in the interior does not affect the chemical properties, they all behave
alike. The same goes for the actinides, %0Th to '**Lw, which have a filled 7s subshell
and a 5f subshell that is getting filled up.

Since we must stop somewhere, let us stop here. If you want to know more,
you must consult books devoted to the subject.]

Exercise 13.4.1.¥ Show that if we ignore interelectron interactions, the energy levels of
a multielectron atom go as Z°. Since the Coulomb potential is Ze/r, why is the energy ocZ*?

Exercise 13.4.2.% Compare (roughly) the sizes of the uranium atom and the hydrogen
atom. Assume levels fill in the order of increasing n, and that the nonrelativistic description

holds. Ignore interelectron effects.

Exercise 13.4.3.* Visible light has a wavelength of approximately 5000 A. Which of the
series—Lyman, Balmer, Paschen—do you think was discovered first?

G e

g

1 See, for a nice trip through the periodic table, U. Fano and L. Fano, Basic Physics of Atoms and
Molecules, Chapter 18, Wiley, New York (1959).
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14.1. Introduction

In this chapter we consider a class of quantum phenomena that cannot be
handled by a straightforward application of the four postulates. The reason is that
these phenomena involve a quantum degree of freedom called spin, which has no
classical counterpart. Consequently, neither can we obtain the spin operator by
turning to Postulate II, nor can we immediately write down the quantum Hamil-
tonian that governs its time evolution. The problem is very important, for most
particles—electrons, protons, neutrons, photons—have the spin degree of freedom.
Fortunately the problem can be solved by a shrewd mixture of classical intuition
and reasoning by analogy. In this chapter we study just electron spin. The treatment
of the spins of other particles is quite similar, with the exception of the photon,
which moves at speed ¢ and can’t be treated nonrelativistically. Photon spin will be
discussed in Chapter 18.

In the next three sections we address the following questions:

(1) What is the nature of this new spin degree of freedom?

(2) How is the Hilbert space modified to take this new degree of freedom into
account? What do the spin operators look like in this space (kinematics of spin)?

(3) How does spin evolve with time, i.e., how does it enter the Hamiltonian
(dynamics of spin)?

14.2. What is the Nature of Spin?

The best way to characterize spin is as a form of angular momentum. It is,
however, not the angular momentum associated with the operator L, as the following
experiment shows. An electron is prepared in a state of zero linear momentum, i.e.,
in a state with a constant (space-independent) wave function. As the operators L,,
L,, and L. will give zero when acting on it, our existing formalism predicts that if
the angular momentum along, say the z direction, is measured, a result of zero will
obtain. The actual experiment, however, shows that this is wrong, that the result is
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+7/2.1 It follows that the electron has “intrinsic” angular momentum, not associated
with its orbital motion. This angular momentum is called spin, for it was imagined :
in the early days that if the electron has angular momentum without moving through
space, then it must be spinning like a top. We adopt this nomenclature, but not the
mechanical model that goes with it, for a consistent mechanical model doesn’t exist.
Fortunately one can describe spin and its dynamics without appealing to any mode],
starting with just the observed fact that it is a form of angular momentum. Let us
now develop the formalism that deals with spin and, in particular, allows us to
understand the above experiment.

14.3. Kinematics of Spin b

The discussion following the general solution to the cigenvalue problem of
angular momentum (Section 12.5) suggests the way for treating particles with
intrinsic angular momentum or spin. Recall that if a particle is described by a wave
function with many (n) components, the generator of infinitesimal rotation is not
just L but something more. The reason is that under an infinitesimal rotation two
things happen to the wave function: (1) the values at each spatial point are re-
assigned to the rotated point, and (2) the components of the wave function get
transformed into linear combinations of each other.

The differential operator L does part (1), while an n X » matrix S is responsible
for part (2).

By generalizing our findings from Exercise 12.5.1 to an » component wave
function in three dimensions, we can say that under an infinitesimal rotation around
the z axis, the wave function is transformed as follows:

vi 1.. 3 —ma/adﬂ. 0 , v

: - . —’;—SZ N TR
v 1 0 —ihd/og v,

where S, is an n X n matrix. In abstract form, this equation reads$
, i

{1_%’12}@ (143.)

We identify J., the generator of infinitesimal rotations about the z axis, as the
z component of angular momentum. We see it has two parts:

Jz=Lz+Sz

{ In practice one measures not the angular momentum, but a related quantity called magnetic moment.
More on this later. Also spin was first discovered on the basis of spectroscopic evidence and not from
an experiment of the above type.

§ The spin operators will be denoted by the same symbol (S) whether they are referred to in the abstract
or as matrices in some basis.



and more generally
J=L+8 (14.3.3)

Our problem is to find the number (#) of components appropriate to the electron
and the three spin matrices that rotate its components. We proceed as follows.
Since J; are generators of rotations, they must obey the consistency condition

U )= S g (14.3.4)
k

Since L and S act on different parts of the wave function (the former on x, y, z, the
Jatter on the indices i=1, . . ., n) they commute, and we may infer from Eq. (14.3.4)
that

[Li,Lj]+[S[, S,]=lh‘:z gijkLk+Z Siijk] (1435)
k k

Using the known commutation rules of the L;, we deduce

[S:, S;1=1%Y, €Sk (14.3.6)
k

Now recall that in Chapter 12 we found matrices J,, J,, and J: [Eqs. (12.5.22)-
(12.5.24)] that obey precisely these commutation relations. But these matrices were
infinite dimensional. However, the infinite-dimensional matrices were built out of
(2j+ 1) x (2j+ 1) blocks, with j=0,1/2,1,3/2, ..., and the commutation relations
were satisfied block by block. So which block shall we pick for the electron spin
operators? The answer is given by the empirical fact that S has only the eigenvalues

+#/2. This singles out the 2% 2 blocks in Egs. (12.5.22)-(12.5.24):

al0 1 A0 —i B[1 0
X:-— s = — . ) z=_ 4..
S 2[1 0] S 2[: 0] § 2[0 —1] (14.37)

Thus, the way to describe the electron is through a two-component wave function
called a spinor:

= "'+(x’y’z)] 1438
v [w_(x,y,a (14.3.82)

1 0
= w+[0]+ w”[li\ (14.3.8b)

If y_=0, y.#0, we have an eigenstate of S. with eigenvalue #/2; if y-#0, ¥+ =
0, the S. eigenvalue is (—7/2).
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376 Let us now proceed to interpret the experiment mentioned earlier. Since we
CHAPTER 14 prepared a state of zero momentum, we want the operator P to give zero when
acting on y. The operator P simply differentiates both components of y:

i

~ifV 0
P-»li i —mv] (1439

We deduce from P |y ) =0, ie.,

—ifiVy. | [0 ’
[ ] [o] i

;i

that w. and y_ are independent of x, y, and z. It follows that L. acting on v gives
zero. However, S, doesn’t: there is an amplitude w. for obtaining +7#/2.

The electron spinor is a two-component object, which puts it between a scalar,
which has one component, and a vector, which has three. However, the components
of the spinor are complex.

A significant difference between spin and orbital angular momentum is this: we
can change the magnitude of orbital angular momentum of a particle (by applying
external fields) but not the magnitude of its spin. The S operator is

Szzh{(z)(zﬂ) 0 };ﬁ{l OJ (143.11)

0 (2)(z+1) 01 ‘

and yields a value 3% on any state w. [For any particle, the magnitude of spin is
decided by the number of components in the wave function and is an invariant. Thus
the spin of the electron is always 1/2 (in units of %) and serves as an invariant label
of the particle, like its charge or rest mass.]

We have deduced that the electron is to be described by a two-component wave
function in the coordinate basis.} Let us restate this result in Hilbert space. First, it
is easy to see that the introduction of spin has doubled the size of Hilbert space; if
it was co dimensional before, now it is 200 dimensional, if you know what I mean.
The basis vectors |xyzs.» diagonalize the mutually commuting operators X, Y, Z,
and S. (one can also think of other bases such as |ps.) or |ps,) etc.). The state vector

1 We made the deduction given the empirical input from experiment. When we come to the Dirac equation,
we will see that incorporating relativistic kinematics will automatically lead to a multicomponent wave
function, ie., lead to spin, if we demand that the equation be first order in time and space.



|w) is a 200-dimensional column vector in this basis:
“/(x=—‘oo,y=—oo, z=—00,5,=+H#/2) 1

y(x,y,z, 5, =+h/2)

W) o Cxyzse| y) = [ === e o (143.12)

R,S; basis

w(x, y,z,5.=~H/2)

w(x=00, y=oc,z=00,s.=—Hh/2)

o -4

Clearly w(r, £7%/2) gives the amplitude to find the electron at r with s.= +%/2. The
horizontal dashed line separates the components with s,=#/2 from those with s.=
—#/2. Now if s. is fixed at 7/2 and we vary x, y, z from —co to oo, the component
of |w> will vary smoothly, i.e., define a continuous function y.(x, y, z). Likewise
the components below the dotted line define a function y_(x, y, z). In terms of these
functions, we may compactify Eq. (14.3.12) to the form

!

i lw>mb—*{:ﬁ$i 2} (14.3.13)

This notation blends two notations we have used so far: if the vector has components
labeled by a discrete index i (i=1, ..., n) we denote it as a column vector, while if
it is labeled by a continuous index such as x, we denote it by a function y(x); but
here, since it depends on discrete (s.) as well as continuous (x, y, z) indices, we write
it as a column vector whose components are functions. The normalization condition
is

1= y|yd>=Y | Kwlxyzs.>{xyzs.| w) dx dy dz

5z

=J(I vl +ly |*) dx dy dz (14.3.14)

In the compact notation, S. is a 2 X 2 matrix:

B! 0 '/’+(X,y,z)
—_— = 14.3.
S:1¥D s oa 2[0 —1][l//_(x,y,z) (14.3.15a)
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whereas in its full glory, it is a 2co-dimensional matrix:

1 0 ] [w-—co.5/2)]

Sy ———— e e (14.3.15b)

R,S; basis 2 _ 1

0 -1 J _l/I(OO, _h/2).l

What about the familiar operators Q(R, P)? Equation (14.3.9) gives P in the compact
notation. Likewise, L. becomes

Liy)———

R,S; basis

{—m 8/0¢ 0 ][ v(x, , 2)

0 —ifid)op v/—(x,y,Z)} (14319

The forms of these operators are consistent with the requirement that operators
built out of R and P commute with the spin operators. Observe that the Hilbert
space V. of the electron may be viewed as a direct product of an infinite-dimensional
space V,, which describes a particle with just orbital degrees of freedom, and a two-
dimensional space V,, which describes a particle with just spin degrees of freedom:

Ve=VQV; (14.3.17)
The basis vector |x, y, z, s,y of V, is just a direct product
|x, ¥, 2, 8:)=|xyz)>Q@|s=1/2, 5> (14.3.18)

Of course V, and V, do not describe two particles which are amalgamated into a
single system, but, rather, two independent degrees of freedom of the electron.

Since we already know how to handle the orbital degrees of freedom, let us
pretend from now on that only the spin degree of freedom exists. Or, to be more
precise, let us assume the orbital degree of freedom exists but evolves independently.
Formally this means that the Hamiltonian is separable:

3

H=H,+H, (14.3.19)



where H, and H, depend on just the orbital and spin operators, respectively. Conse-
quently the state vector factorizes into}

W () =1yo()>®x:(1)> (14.3.20)

where |wo) and | x> are elements of V, and V,, respectively. Now |wo(r)> evolves
in response to H,, while the evolution of |y (¢))> is dictated by H,. We will follow
just the evolution of | x,>. The product form of | w) ensures that the spin and orbital
degrees of freedom are statistically independent. Of course, there are many interesting
cases in which H is not separable, and the orbital and spin degrees are coupled in
their evolution. We will tackle them in a later chapter.

With this assumption, we have just a (complex) two-dimensional Hilbert space
V, to work with. A complete basis is provided by the vectors |s, s.> =|s, m#i) =|s, m).
They are

ls, my=11/2,1/2) > B} (14.3.21a)
s, my=11/2, =1/2) > [?] (14.3.21b)
Any ket | x> in V, may be expanded as
Z>=all/2,1/2>+Bi1/2, —1/2) > [Z} (14.3.22)
The normalization condition is
1=(l) 57z 1=le, ﬂ*]{;]ﬂalzﬂﬂlz (14.3.23)

If one calculates {S) in the eigenstates of S;, one finds
1/2, £1/2{8]1/2, £1/2>=+x(#/2)k (14.3.24)

One refers to these as states with spin pointing up/down the z axis. More generally,
the eigenstates |7, £) of 7#i-S with eigenvalues +#/2, in which

(A, |S|A, £>=x(h/2)A (14.3.25)
are said to be states with spin up/down the direction of the unit vector 7. Let us

address the determination (in the S, basis) of the components of |7, £) and the
verification of Eq. (14.3.25).

{In the R, S, basis, this means w(x, y, z, 5., )= Wo(x, y, z, 1)x{#) where y is a two-component spinor
independent of x, y, and z.
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Let us say # points in the direction (8, ¢), i.e., that

A, =cos 8
Ay=sin 0 cos ¢ (14.3.26)
i, =sin 0 sin ¢

The kets |A4, +) are eigenvectors of

A-S=n,S.+tn,S,+n.S,

_hl n ne—in,
2 Lnctin, -n,
#i li cosf sin@ e‘“"]

“olsin@e® —cos

(14.3.27)

It is a simple matter to solve the eigenvalue problem (Exercise 14.3.2) and to find

. . cos(0/2) e ¢
[Aup)>=|A+d) =[ sin((G//2)) S92 } (14.3.28a)
R . —sin(0/2) e 2
|4 down)>=|A—> =[ cosEG;Z; 972 } (14.3.28b)
You may verify that as claimed
{A£|S|AL)=£(%/2)(isin O cos ¢ +j sin B sin ¢+ k cos 0) ;
= +(%/2)A (14.3.29)

An interesting feature of V, is that not only can we calculate (S} given a state,
but we can also go the other way, i.e, deduce the state vector given {S>. This has
to do with the fact that any element of V, has only two (complex) components ¢
and B, constrained by the normalization requirement |a|®+|f]*=1, i.., three real
degrees of freedom, and {S) contains exactly three pieces of information. If we write
{S> as (%/2)#, then the corresponding ket is |7, + or if you want | —#, —). Another
way to state this result is as follows. Instead of specifying a state by a and j, we
can give the operator - S of which it is an eigenvector with eigenvalue #/2. An
mterestmg corollary is that every spinor in V, is an eigenket of some spin operator
A-S with eigenvalue 7 /2. i

Exercise 14.3.1. Let us verify the above corollary explicitly. Take some spinor with com-
ponents @ =p, ¢ and B=p, . From (¥|x)> =1, deduce that we can write p, =cos(8/2)
and p,=sin(8/2) for some §. Next pull out a common phase factor so that the spmor takes
the form in Eq. (14.3.28a). This verifies the corollary and also fixes 7.

E e



So much for the state vectors in V,. How about the operators on this space?
Let us commence with S, S, , and S;. It is convenient to introduce the Pauli matrices
o, defined by

s=§a (14.3.30)

0 1 0 —i 1 0
ox—[l 0j|, oy—[i 0j|, 02~|i0 —-lj| (14.3.31)

b
It is worth memorizing these matrices. Here are some of their important properties.
(1) They anticommute with each other:

& [0:,0,1,=0 or o0,=—0,0; (i#£)) (14.3.32)

(2) From the commutation rules for the spin operators S, we get, upon using
the anticommutativity of the Pauli matrices,

*‘ 0x0,=I0, and cyclic permutations (14.3.33)
(3) They are traceless
i Tro;=0, i=x,y,z (14.3.34)

(See Exercise 14.3.3 for the proof.)
(4) The square of any Pauli matrix equals I:

* oi=1 (14.3.35)
or more generally,
L
(A 6)’=1 (14.3.36)

Proof. Since S, has eigenvalues +#%/2, it foilows that

o2t
2 2
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in this Hilbert space.} But since what we call the z axis is arbitrary, it must be fru
that
7 I
(s s
2 2
or
h2
ASyY=—1I
(7-S) A
or

(Ao =1I QED.

(5) We can combine Egs. (14.3.32) and (14.3.35) into i

[0, 0,]. =26, (14337

(6) Combining this relation with the commutation rules ‘

[ox, 0,]=2ic. and cyclic permutations (14.3.38)

we may establish a very useful identity (Exercise 14.3.4): '
(A+6)(B-6)=A-BI+i(AXB)-¢ (14.3.39)

where A and B are vectors or vector operators that commute with 6.
(7) Combining Eqgs. (14.3.33), (14.3.34), and (14.3.35) we find that
Tr(o0;)=26y, Lj=x,¥,z (14.3.40a)

Let us view the identity, /, as the fourth Pauli matrix. If we call it ¢, then

Tr(6,65)=280 (a,B=x,y,2 08 (14.3.40b)

This equation implies that the o, matrices are linearly independent. By this I mean
as usual that

Y €0e=0-¢,=0 for all « (14.3.41)

To prove this for say ¢z, multiply both sides by o5 and take the trace.

1 See Exercise 12.5.4.
§ From now on a, f will run over four values x, y, z, 0; while £,  will run over just x, y, and 2.

&



Since any 2 x 2 matrix M has only four independent (complex) degrees of
freedom, it may be written as

, M=} m,0, (14.3.42)

To find mg, we multiply by o and take the trace, to find
mg=13Tr(Moy) (14.3.43)

(The coefficients m, will be complex in general, and real if M is Hermitian.)
Thus, any operator in V,; may be expressed in terms of the ¢, which form a
basis that is orthonormal with respect to the inner product 3 Tr(c,0,).

Explicit Forms of Rotation Operators

The fact that (7i- 6)*=1 greatly simplifies many computations and allows us to
compute in closed form several operators such as U(t) = exp(—iHt/#), U[R(0)]=
exp(—#0+S/#), which are intractable in infinite-dimensional spaces. In this section
we consider the rotation operators, and in the next, the propagator.

Consider

U[R(®)|=exp(—i0:S/A)=exp(—i0-6/2)

, 2 \3
i =I+(—l—0—)§-c+l<~ﬁ) 1+1<—ﬁ) f-6)+- -
H 2 a\ 2/ 3 2

Grouping together the coefficients of I and 9-0, we get
U[R(8)]=cos(8/2)I~isin(0/2)0 o (14.3.44)

Let us put this operator to a test. Suppose we have a particle with spin up along
the z direction, i.e., in the state [4]. If we want to get from this a particle in the state
[A,+), it is clear that we must rotate [,] by an angle # about an axis perpendicular
to the z axis and the 7 axis. Thus the rotation angle is

A

kxnA
Ik x A

0=00=0 (14.3.45)

{ The inner product between two matrices M and M’ acting on V, is actually Tr(MM”‘). However, the
dagger is irrelevant for the Hermitian ¢’s. It is an interesting exercise to check that this inner product
obeys the three axioms.
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where k is the unit vector along the z axis. Since /i=(sin 8 cos ¢, sin 8 sin ¢, cos 6),

it follows that ;

6=— ! 0 (—sin 8 sin ¢, sin 8 cos ¢, 0)=(—sin @, cos ¢, 0)  (14.3.46)
sin
The rotation matrix is, from Eq. (14.3.44), %

_i0 5 \_[ cos(8/2) —sin(6/2) e

According to our mnemonic, the first column gives the rotated version of [g).
We see that it agrees with |4, +) given in Eq. (14.3.28) up to an overall phase.
Here is a summary of useful formulas that were derived or simply stated:

,‘3

[O',', O'j]+=216,'j

[o:, 0;]1=2i) g0
k

(A-6)*=1I
Tro;=0

Tr(c,05)=284p (e, B=x,y,2,0)

exp(—ie 9~c)=cos(g)1—isin(g) -6
2 2 2

(A-6)(B:6)=(A"B)/+i(AxB) ¢

Exercise 14.3.2.* (1) Show that the eigenvectors of 6-# are given by Eq. (14.3.28), I
(2) Verify Eq. (14.3.29). g

2

¥

Exercise 14.3.3.* Using Eqgs. (14.3.32) and (14.3.33) show that the Pauli matrices are
traceless.

Exercise 14.3.4.* Derive Eq. (14.3.39) in two different ways.
(1) Write 0,0, in terms of [o;, 0]+ and [0, o;].
(2) Use Eqgs. (14.3.42) and (14.3.43).

®
¥
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sen

Figure 14.1. In the figure, B is the magnetic field and p is the magnetic moment
of the loop. The direction of the arrows in the loop is that of the current.

:

Exercise 14.3.5. Express the following matrix M in terms of the Pauli matrices:

a B
M=
[7 6 }
Exercise 14.3.6. (1) Argue that |A, +> = U[R(¢K)IU[R(Ej)]|s.=#/2). (2) Verify by
explicit calculation.

Exercise 14.3.7. Express the following as linear combinations of the Pauli matrices
and [

() (I+io,)"”. (Relate it to half a certain rotation.)

@) QI+6.)7"

3) 0.

Exercise 14.3.8.* (1) Show that any matrix that commutes with ¢ is a multiple of the
unit matrix.

(2) Show that we cannot find a matrix that anticommutes with all three Pauli matrices.
(If such a matrix exists, it must equal zero.)

14.4. Spin Dynamics

Since the quest for the spin Hamiltonian is based on classical analogy, let us
recall some basic ideas from classical magnetostatics. Consider a square loop
(Fig. 14.1) carrying a current I, in a magnetic field B. From standard magnetostatics
(force per unit length on a current-carrying conductor etc.) one can show that the
torque on the loop is

T=pxB (14.4.1)
where p, the magnetic moment, is given by

I-A
4

where A is the area of the loop, ¢ is the velocity of light, and e, is a unit vector
perpendicular to the plane of the loop.} The effect of T will be to rotate the loop
until p and B are parallel.

Since we finally wish to address a quantum mechanical problem, it is preferable
to summarize the interaction between the loop and the magnetic field in terms of

I The sense of e, is related to the current flow by the right-hand rule.
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the potential energy associated with the torque: If 8 is the angle between u%d B.
the interaction energy is{

%,»nEJT(B) do= JuB sin @ dd=—puBcos 0=—p'B (1442

As we would expect, this energy is minimized, i.e., a stable configuration obtain.
when p and B are parallel.

Although we derived the above equations for a square loop, they are true for
any tiny planar loop, over whose extent B is constant. So we may apply it to the
following problem. Imagine a particle of mass m, charge g, moving in a circular
orbit of radius r. The current associated with this charge is

I=charge flow past any point in the circle per second
-4v

2ny

and the magnetic moment has a magnitude

2
uzﬂ.E:LW:(L)mw:L.l (1449)
2rr ¢ 2¢ \2mc 2mc

B

where / is the magnitude of the angular momentum. Since p and 1 are parallel,

|
p=(i>1 (1446)

2me

The ratio of p to 1is called the gyromagnetic ratio y. For the particle considered
above,

q
— 14.4.7
2mce ( )

In the case of the current loop, it was stated that the effect of the torque T is to
cause p to align with B. This picture changes when p has its origin in angular
momentum, as is the case for the particle in question. In this case, T causes a

I This is not the full Hamiltonian (for it does not include the kinetic energy of the loop) but just the
potential energy of interaction with the magnetic field.



Figure 14.2. In a small time At the tip of the I vector precesses by an
angle A¢ around the magnetic field vector.

precession of p around B. We may see this as follows (see Fig. 14.2). The equation
of motion is

dl
=E=uxB=y(]xB) (14.4.8)

So in a small time At,

ks

Al=y(1x B)At

Al=yIBsin 8 At

Since Al is perpendicular to 1, the tip of the 1 vector moves by an angle

—Al
§ A¢=(—'—)=(—y8) At (14.4.9)
3 Isin 8
Le., precesses at a frequency
®y=—yB (14.4.10)

Orbital Magnetic Moment in Quantum Theory

These ideas reemerge in the quantum theory. The Hamiltonian for a particle of
mass m and charge ¢ in a magnetic field is

2 2
H—————————q~(P-A+A-P)+q~I¥AL2 (14.4.11)
2m 2m  2mc 2mc
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Let ﬂ
B . .
A=5(—yl+x]) (144.12)

so that
VxA=B=Bk (144.13)

is constant and along the z axis. We will assume B is small and drop the last term
in H, quadratic in B. When the middle term acts on any jy ),

(P-A)|y>—>—ifiV-(Ay)
=—iA[(V-A)y +A-Vy]
=(—iiA-V)y—>(A-P)ly)

since V*A =0 here.] Thus the interaction Hamiltonian is

Ho=—-1 (2A-P)
2mce

B
-2 2 yp +xpP,)
mc 2
=—2 L.B=—-B (144.14)
2me
so that ’
p=-21 (14.4.15)
2mc

exactly as in the classical case. (We use the same symbol p to denote the classical
variable and the quantum operator. We will occasionally violate our conventiop]
this manner, so as to follow other widely used conventions.)

If we project this relation along the z axis, we get

p= g -9%

0, £1, £2,..))
2mce 2mce

1 1t is shown in Section 18.4 that A corresponding to a given B can always be chosen divergenceless®



The quantity gfi/2mc is called the Bohr magneton of the particle. The electron Bohr
magneton, simply called the Bohr magneton, has a magnitude

7
22 ~0.6x107%eV/G (14.4.16)
2me

where m is the mass of the electron and G stands for gauss. The nucleon Bohr
magneton is about 2000 times smaller:

7
L ~03x107"eV/G (14.4.17)
2Mc

where M is the nucleon (proton or neutron)f mass. (The nucleon Bohr magneton
is also called the nuclear Bohr magneton.)

It may be verified, by the use of Ehrenfest’s theorem, that {1 precesses around
the constant field B just as 1 would (Exercise 14.4.1).

Spin Magnetic Moment

Armed with all this knowledge, we now address the problem of how the electron
interacts with an external magnetic field. We assume once again that there is a
magnetic moment operator p associated with the spin angular momentum. Since any
operator on V, is a linear combination of the identity and the spin operators, and
since p is a vector operator, we conclude that

pn=yS (14.4.18a)

where ¥ is a constant. Since y = —e/2mc for the orbital case, let us write

p=g(—e/2mc)S (14.4.18b)

where g is a constant. We also assume that

=" ¢'B (14.4.19)

- The intrinsic magnetic moment due to spin is g/2 magnetons. Our present
formalism does not tell us what g is; to find it we must confront the above H with
experiment and hope that for some value of g it gives the right physics. This happens
to be the case, and the experimental value for g is very close to 2. We assume

Recall that these two are nearly equal: M,c*=938.28 MeV, while M,c>=939.57 MeV.
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hereafter that
g=2 (14.4.20)

Thus the gyromagnetic ratio for spin is twice as big as for orbital angular momentum,

Why is g ~2? And why isn’t it exactly equal to 2, which would be much prettier?
Our formalism doesn’t tell us. But it is irresistible to digress and mention that the
Dirac equation, which we will discuss in Chapter 20, predicts that g=2 exactly.
Quantum electrodynamics, which we will not discuss in this book, predicts that the
Dirac result will receive corrections that can be calculated in a power series in ¢,
the fine-structure constant. The physics behind the corrections is the following. Recall
that the interaction between the electron and other charged particles is mediated by
the exchange of photons. Occasionally, an electron will recapture the photon it
emitted. Between the emission and reabsorption, the system that originally contained
just the electron will contain an electron and the photon. If the magnetic moment
of the system is probed at this time, we can get a result that corresponds to g+#2,
since the electron in the two-particle system has both spin and orbital angular
momentum. In fact, quantum electrodynamics predicts that what we call the electron
is really a superposition of states that contain one Dirac electron, a Dirac electron
and a photon, a Dirac electron, several photons, and several electron—positron pairs,
etc.I The reason the observed value of g is so close to the Dirac value of 2 is that
configurations of increasing complexity are suppressed by increasing powers of the
fine-structure constant in the superposition. Thus the simplest configuration, with
just the Dirac electron, will dominate the picture and the complicated states will
provide smaller and smaller corrections to the result g=2. The corrections may be
calculated in a power series in a:

g=2|i1+L-a+0(a2)+- . :|
2r

which has been evaluated to order a’. The result is§
Ztheory = 2[1.001159652140(+28)]

where the error £28 in the last two digits is mostly due to uncertainties in the value
of a itself and in the numerical evaluation of some of the integrals in the calculation,

In addition to higher-order corrections, this result also receives corrections due
to other interactions of the electron, i.e., due to its ability to exchange other quanta
such as the graviton. But these effects are negligible to the accuracy considered above.
The experimental value of g is||

Gexp=2[1.0011596521884(+43)]

 The time-energy uncertainty relation allows the production of these particles for short times.
§ T. Kinoshita and W. B. Lindquist, Phys. Rev. D42, 636, 1990.
I R. S. Van Dyck, P. B. Schwinberg, and H. G. Dehmelt, Phys. Rev. Letz. 59, 26, 1987.



in splendid agreement with theory. Feynman has pointed out that this is equivalent
to predicting and measuring the distance between New York and Los Angeles to
within the width of a human hair!

The theoretical situation is bad for the nucleons. The reason is that these partici-
pate in strong interactions as well, i.e., can emit and absorb pions etc., and the
counterpart of & is large (~15). In other words, the state with just the Dirac particle
no longer dominates, and the corrections are no longer tiny. We can of course
measure g experimentally, and the result is (to two places)

¥ proton = 5.6 (e/2Mc)
¥ neutron = —3.8 (e/2Mc)

Dirac theory predicts y=e/Mc or g=2 for the proton and y =0 for the neutral
neutron. The nonzero y of the neutron reflects the fact that the neutron can be in
a state that has particles with compensating electrical charges but not necessarily
compensating magnetic moments.

Because of their large masses, the magnetic moments of the nucleons are negli-
gible compared to that of the electron.}

Let us now return to the dynamics of spin in a magnetic field B. All we need
from now on is the Hamiltonian

l H=-p'B=—yS'B (14.4.21)
where
— .2 —
=_&=_"¢ (14.4.22)
2mc  mc

Let |w(0))> be the initial state of the electron. The state at a later time is
lw()>=U®Iy(0)>
where
U(ty=e H/i = gtiri(SBY/A (14.4.23)

Since exp(—i8-S/#) is the operator that rotates by 8, the effect of U(t) is clearly to
rotate the state by an angle

0(r)=—yBt (14.4.24)

1 End of digression.
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It follows that {(S) will precess around B at a frequency w,= —vB. If this seems too
abstract, let us consider a concrete example. Let B be along the z axis: B=Bk. In
this case

U(ty=exp(iytS.B/#)
=exp(iwotc./2) (wo=17yB)

Since o is diagonal,

eiwot/z 0
U(t)_.)[ 0 eimOt/’2:|

Consider an electron that starts out in the state |4, +):

cos(0/2) e 47 }

[w(0)> =14, +>_’[ sin(6,/2) £i9/2

in which case

cos(8/2) e (¢ @/
sin(/2) e'? @0/

lw (1)) = U(t)lw(0)>—*[

i.e., ¢ decreases at a rate w,.

Paramagnetic Resonance

Consider a classical magnetic moment p in a field By = Bok. It will precess around

B, at a frequency
Wy=— }/BO i

Suppose we view this process in a frame that is rotating at a frequency o parallel
to Bo. In this rotating frame, the precession frequency will be

0,=0—0=—yBi—w=—y(B,tw/y) (14.4.25)
Thus the effective field in this rotating frame will be

B.=Byt+w/y (14.4.26)



2
M osin a

Figure 14.3. The situation in the rotating frame. The effective magnetic

field is B,. The maghetic moment starts out along the z axis (but is , o, & a
slightly displaced in the figure for clarity) and precesses around B,.

The z component of the moment oscillates with an amplitude y sin” a,

where ¢ is the opening angle of the cone. At resonance, B, lies along

the x axis and p precesses in the plane normal to it. The amplitude of

the ., oscillation is then at its maximum value of u.

This result is valid even if @ and By are not parallel (Exercise 14.4.5). Consider now
the problem of interest, where, in a nonrotating (lab) frame

B=Bcos wti— B sin otj+ Bok (B By) (14.4.27)
and at =0,
p(0)=pk (14.4.28)

We would like to find out the evolution of p(#). Since B depends on time, it proves
advantageous to first consider the problem in a frame that rotates at the same
frequency @ = —wk as the tiny clockwise rotating field B. In this frame, the rotating
component of B gets frozen (say along the x axis) and the constant component Bok
gets reduced as per Eq. (14.4.26) so that the effective, time-independent field is
B,= Bi,+(By—w/y)k (14.4.29)

where i, is the unit vector in the x direction in the rotating frame. (k =Kk, of course.)
In this frame, p will precess around B, at a frequency

®,.=-yB, (14.4.30a)
where
o) =0,=y[B+(Bo—0/y)]"? (14.4.30b)
It is a simple matter to deduce from Fig. 14.3 that u, oscillates as follows:

)=y cos’ a+yu sin® a cos w,t

(00— )’ ¥’ B’ cos o,t ] (14.4.31)

HA0) [(0’0_ oY +7'B (0o—w)+7y'B
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This formula for p.(¢) applies in the lab frame as well, since y is invariant under :
rotations. As @ increases from 0, the z component of B, steadily decreases; a, the
opening angle of the cone, increases, and the amplitude of oscillation, y sin® a, grows.
At paramagnetic resonance, ® = wo, B,= Bi,, a = /2, the cone becomes a circle in
the y—z plane, and u. oscillates with the largest amplitude p at a frequency yB. The
behavior for @ > w, is obvious.

What if we apply the rotating field at the resonance frequency, but for a time
7 such that l

yBr=mn/2?

Such a pulse, called a 90° pulse, will swing the magnetic moment into the x-y plane
(in either frame). Thereafter p will precess around Bok at the frequency w, in the
lab frame. If we apply a 180° pulse, i.e., choose 7 such that

yBr=nr

the pulse will reverse the sign of p and leave it pointing down the z axis, where it
will stay (in either frame).

These results for the classical moment p apply to the expectation value {p) in
the quantum problem, as you may verify by doing Exercise 14.4.1, where it is proved
in general, and Exercise 14.4.3, where the explicit verification in this case is discussed.

Negative Absolute Temperature (Optional Digression) '

The absolute zero of temperature, 0 K, (~—273°C) is defined so that nothing
can be colder, yet here we speak of negative absolute temperatures! There is no
conflict, however, since we will see that negative temperatures are hotter than positive
temperatures! Before you give up all faith, let us quickly sort this thing out.

The absolute temperature T is defined as follows:

1 _ 145 _0InQ(E)
kT kOE O

where f is the thermodynamic temperature, k is Boltzmann’s constant, S=kInQ s
the entropy and Q(E) is the number of states available to the system as a function
of its energy. (Q depends on other variables, assumed to be fixed.) In most systems,
B is positive because adding energy only opens up more states and increases €. For
instance, if we have a box of gas molecules, they all stay in the ground state at T=
0. So, S=kInQ=k1n 1=0. As we pump in energy, they can occupy higher states.
and S and Q can increase without limit.

Consider now a collection of N spin-half particles sitting on some crystal lattice
which is immersed in a field B= Bok. Each magnetic moment (or spin) has two states
only, with energies E=+uB,, where u is the magnitude of the magnetic moment,
At T=0K, all are in the ground state (p parallel to B); Q=1, and S=0. The system
has a2 magnetic moment M =nuk. If we pump in energy 2uB,, one of the moments
can move to the upper energy state; there are N ways to pick the one that moves



up, so that Q=N and S=k In N. Clearly 8 and T are positive. As we pump in more
and more energy, S keeps growing until half are up and half are down. At this
point, S reaches 2 maximum, §=0S/0E=0, and T=+co. The system has no mean
magnetic moment along the z axis. Pumping in more energy only reduces S, with
more and more particles piling up in the upper state. So f and T become negative.
Finally, when E= NuB,, all moments are in the upper energy state (antiparallel to
B), M=—Nuk, there is only one such state; Q=1 and S=0. This corresponds

to f=-oo, T=0". Thus the sequence of temperatures is 7=
0*,...,300,...,00,—00,...,—300,...,0. In terms of B, there is more continu-
ity: f=00,...,0%, 07, ..., —o0. (We should have chosen —f as the temperature,

for it rises monotonically from —oo to + 00 as we heat the system.) It should be clear
that negative temperatures are hotter than positive temperatures since we go from
the latter to the former by pumping in energy. We can also see this by imagining a
system at 7= —300 K brought in contact with identical system at 7=+300 K. Since
the populations of the two systems are identical, except for the change, parallel «
antiparallel, they can increase their entropies by moving toward the state with equal
numbers up and down. In this process energy clearly flows from the negative tempera-
ture system to the positive temperature system, i.e., the former is hotter. Also note
that the final equilibrium temperature is not 0 K but oo K.

How does one prepare negative temperatures in the lab? One takes a sample
at room temperature, say at 7=300 K. It will have more moments parallel than
antiparallel :

N(parallel) e %5

BuBy

=Prbo | (14.4.33)

N(antiparallel) e

and a net magnetic moment M along the z axis. If one applies a 180° pulse, there
will be population inversion (parallel > antiparallel), which amounts to a change in
the sign of B and T [see Eq. (14.4.33)]. The spin system cannot stay in this hot state
(T'=-300 K) forever, because it is in contact with the lattice, which will eventually
cool it down to room temperature.

The return to thermal equilibrium is easier to observe if one applies a 90° pulse
which swings M into the x-y plane. The temperature now is 7=o0 K, since M.=
0- N(parallel) = N(antiparallel) » T= co. Thus M, which will initially begin to pre-
cess around B= Bk, will eventually realign itself with B. The decay of its rotating
components in the x-y plane may be observed as follows. Suppose the specimen is
a long cylinder whose axis lies in the x-y plane. If one winds a coil around it, the
transverse (x-y) components of M, which simulate a bar magnet rotating in the x-
y plane, will induce an oscillating voltage in the coil. The frequency of the (damped)
oscillation will be w, and the half-life will be a time 7, called the transverse relaxation
time.}

Exercise 14.4.1.* Show that if H=—yL-B, and B is position independent,

d<{L
KL uxBy= > xB

i The transverse components of M decay for other reasons, besides restoration of thermal equilibrium.
See R. Schumacher, Magnetic Resonance, W. A. Benjamin, New York (1970).
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Comparing this to Eq. (14.4.8), we see that {u) evolves exactly like p. Notice that this
conclusion is valid even if B depends on time and also if we are talking about spin instead of
orbital angular momentum. A more explicit verification follows in Exercise 14.4.3.

Exercise 14.4.2. Derive (14.4.31) by studying Fig. 14.3.

Exercise 14.4.3.* We would like to study here the evolution of a state that starts out as
(¢) and is subject to the B field given in Eq. (14.4.27). This state obeys '

d
iﬁalw(t)>=H|w> (14434

where H=—yS-B, and B is time dependent. Since classical reasoning suggests that in a frame
rotating at frequency (—wk) the Hamiltonian should be time independent and governed by
B, [Eq. (14.4.29)], consider the ket in the rotating frame, |y,(¢)), related to |y(f)) bya
rotation angle w¢:

(D> =e" " y(D) (144.33)
Combine Eqgs. (14.4.34) and (14.4.35) to derive Schrddinger’s equation for [y, (1)) in ihe S,

basis and verify that the classical expectation is borne out. Solve for |y,(¢))> = U.(0)|y,(0))
by computing U,(¢), the propagator in the rotating frame. Rotate back to the lab and show

that
ot w0 . [0:\] .,
[COS( )+1 0 sm(—)] ete?
2 o, 2

IO ot (14.4.36)
z Dasls in a) t )
sin(-—' )e"“”/z
@, 2

Compare this to the state {fi, +) and see what is happening to the spin for the case w,=0.
Calculate {u.(#)) and verify that it agrees with Eq. (14.4.31).

Exercise 14.4.4. At t=0, an electron is in the state with s,=7%/2. A steady ficld B=5j,
B=100G, is turned on. How many seconds will it take for the spin to flip?

Exercise 14.4.5. We would like to establish the validity of Eq. (14.4.26) when o and B
are not parallel.

(1) Consider a vector V in the inertial (nonrotating) frame which changes by AVina
time Az Argue, using the results from Exercise 12.4.3, that the change as seen in a frame
rotating at an angular velocity @, is AV —® x VA¢, Obtain a relation between the time deriva-
tives of V in the two frames.

(2) Apply this result to the case of 1 [Eq. (14.4.8)], and deduce the formula for the
effective field in the rotating frame. .



-fx_ercise 14.4.6 (A Density Matrix Problem). (1) Show that the density matrix for an
ensemble of spin-1/2 particles may be written as

p=%(1+a-o')

where a is a c-number vector.

(2) Show that a is the mean polarization, {6).

(3) An ensemble of electrons in a magnetic field B= Bk, is in thermal equilibrium at
temperature T. Construct the density matrix for this ensemble. Calculate (fi).

14.5. Return of Orbital Degrees of Freedom

Let us now put back the orbital degrees of freedom. The simplest case is when
H s separable:

H=H,+H, (14.5.1)

so that the energy eigenstates factorize

ly>=wo>®lxs>

An example is provided by the hydrogen atom, where the Coulomb interaction is
independent of spin:

* H=H, (14.5.2)

Here the spin is a constant in time, and all that happens is that we attach a constant
spinor ¥ to the wave functions we found in Chapter 13. If we choose y to be an
cigenstate of S, we havel

! [, =1/25 = Woum(r, 0, $)1+ [x+=[(l)ﬂ
(14.5.3)

jalmm,=—1/2> W (1, 6, @)1 - [x,=[(l)ﬂ
| 4

The energy levels are of course unaffected. All we have is a doubling of states, with
the electron spin being up or down (the z axis) in each of the orbital states (n/m).
Consider next the problem of the hydrogen atom in a weak magnetic field B=
Bk. Although both the proton and the electron couple to B, the smaliness of the
ratio m/ M allows us to ignore, in the first approximation, the coupling of the proton’s
intrinsic and orbital magnetic moments [these are of order m/M and (m/M)’ relative

{ We use the subscript s on m;, to remind us that it measures the spin projection: s,=m.h. It will be
dropped whenever it is obvious that we are dealing with spin.
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to that of the electron; see Exercise 14.5.1]. Thus we have, from Egs. (14.4.14) and
(14.4.19),

H=HCoulomb_<:€£>Lz—<:e;B>Sz (14.5.4)

2mc mc .

Since the additional terms in H commute with Hcouoms, L, L., and S., this H is
diagonalized by the same states as before, namely, |némm,). The eigenvalues are,

however, different:
—Ry eB#

H\nlmm,) = [ 7 +%‘(m + 2my )jl |nlmna,) (14.5.5)

The degeneracy is greatly reduced by the B field. The ground state, which was twofold
degenerate, splits into two levels:

E,.;=—Ry+-—— (14.56)

The second, which was eightfold degenerate, splits into five levels:

2m=1,m,=1/2)
1(m=0,m,=1/2)(I=00r1)
En=2=—¥+§B—ﬁx O(m=1,m,=—1/2, orm=—~1,m,=1/2) | (1457
ME N ~1m=0,m,=—1/2) I=0o0r 1)
~2(m=~1,my=~1/2)

and so on. In a multielectron atom, one simply adds the contributions from all the
electrons. The splitting of levels leads to an increase in the number of spectral lines;
where there was one, there will now be several, and the spacing between them may
be varied by varying B. This phenomenon is called the Zeeman effect.

Consider lastly the Hamiltonian

H=HCoulomb+aL'S (1458)

whose origin will be explained in a later chapter. For the present, we note that it is
not separable, and consequently the spin and orbital degrees of freedom are coupled
in their time evolution. The eigenstates of H will not be simply products of orbital
and spin parts, but instead superpositions of such states that diagonalize L-S. The
details will be explained in the next chapter.

Exercise 14.5.1.* (1) Why is the coupling of the proton’s intrinsic moment to B an order
m/M correction to Eq. (14.5.4)?

(2) Why is the coupling of its orbital motion an order (m/M)* correction? (You may
reason classically in both parts.)



Figure 14.4. The Stern-Gerlach

experiment. A beam of particles
endowed with magnetic moments s
enters the inhomogeneous field.

D ——————
* o L]

Classically the beam is expected to
fan out and produce a continuous
trace (A) on the screen. What one 2

observes is a set of discrete dots y
(B). This implies the quantization

of magnetic moment and angular
momentum.

Exercise 14.5.2.* (1) Estimate the relative size of the level splitting in the n=1 state to
the unperturbed energy of the n=1 state, when a field B=1000kG is applied.

(2) Recall that we have been neglecting the order B* term in A. Estimate its contribution
in the n=1 state relative to the linear (—p*B) term we have kept, by assuming the electron
moves on a classical orbit of radius a,. Above what |B| does it begin to be a poor
approximation?

The Stern—Gerlach (SG) Experiment

We now consider (in simplified form) the SG experiment, which clearly displays
the quantization of angular momentum (along any direction). The apparatus (Fig.
14.4) consists of north and south pole pieces, between which is an inhomogeneous
magnetic field. A beam of (particles with) magnetic moments, traveling along the y
axis, enters the apparatus in a region where B is predominantly along the z axis and
0B,/0z <0. What do we expect will happen classically? If we pretend that the magnetic
moment is due to a pair of equal and opposite (fictitious) magnetic charges, it is clear
that any inhomogeneity in B can lead to a net force on the dipole. This is confirmed
if we calculate the force associated with the gradient of the interaction energy

B,
F=—V#=V(u-B)=(u-V)B=uzaa—k (14.5.9)
zZ

[We have used the identity V(p-B)=(n-V)B+(B-V)p+px (VxXB)+Bx (Vxp). In
the present case, p is not a function of r, and by Maxwell’s equations, VXB=0.
Both Fy and F, vanish on average due to the precession of spin in the x—y plane.]
Classically, since y. is continuous, the beam is expected to fan out and produce a
continuous trace (A in figure) on a screen placed behind the magnet. The actual
experiment performed with atoms reveals a series of discrete dots (B in figure). We
understand this in semiclassical terms, by saying that pu, in Eq. (14.5.9) is discrete
and therefore so is the angular momentum along the z axis.

This experiment can also be used to reveal the existence of electron spin. For
example, if we send in a beam of hydrogen atoms in their ground state, the beam
will split into two parts.
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q

Let us describe the above-mentioned hydrogen atom experiment in quant
mechanical terms. Suppose the initial state of a hydrogen atom is

| b
Winitial = Wy(Tom ) Wioo(T) [O ] (1

where vy, is a wave packet drifting along the y axis that describes the CM mo

W10 is the ground state wave function, and [¢] is the electron spinor. (The prof
spin is ignored, for the associated magnetic moment is too small to affect the dyna
ics.) Since the electron spin is up, its u. is down. Since 6B./0z <0, the classical fo
on the atom is up. So by Ehrenfest’s theorem} we expect the atom to emerge
the apparatus in a state (up to a phase factor)

Woul V/y +z(rCM )Wloo(l')(: } (145.

where v, .. describes a wave packet that is displaced (relative to the incoming oi
along the positive z axis and has also a small velocity in the same direction. Likewi
if the electron spinor had initially been [}], the CM would have emerged in the s
¥, . (in the same notation). More generally, if

Vinitial = W, W [a]—ww [a}ww [0} (14.5
initial y¥ 100 ,B y¥ 100 0 yY 100 ﬂ D

then, by the linearity of Schrodinger’s equation

a 0
V/oul Wy +.W100|: 0 :|+ Wy,—leOO[ﬂ] (145'

Assuming v, .. are narrow packets with no overlap, we see that the SG apparat
has introduced a correlation between the spin and orbital coordinates: if we cat
(by placing a screen) the outgoing atom above the original line of flight {ie., n
region where vy, .. is peaked) it will have spin up, while if we catch it below, t
spin is down.

The SG apparatus can be used to prepare a state of definite spin orientatio
to get a pure spin up/down beam we simply block the lower/upper beam. But nc
that the filtering process changes the average z component of linear momentum, Tt
can be undone and the particle restored its original momentum (but filtered wi
respect to spin) if we place some more magnets (with B along the z axis) behind tt
apparatus. With this modification {which is assumed in the following exercises) t

 Recall the warning at the end of Chapter 6. In the present case, the system follows the classical trajecte
(approximately) thanks to the massive proton. If we send in just the electron, quantum fluctuatio
would wipe out the effect. See, for example, pages 324-330 of G. Baym, Lectures on Quantum Mechani
Benjamin, New York (1969). i



only effect of the SG apparatus with one or the other beams blocked is to filter the
spin without affecting the orbital motion.

Exercise 14.5.3.* A beam of spin-1,2 particles moving along the y axis goes through two
collinear SG apparatuses, both with lower beams blocked. The first has its B field along the
z axis and the second has its B field along the x axis (i.e., is obtained by rotating the first by
an angle 7 /2 about the y axis). What fraction of particles leaving the first will exit the second?
If a third filter that transmits only spin up along the z axis is introduced, what fraction of
particles leaving the first will exit the third? If the middle filter transmits both spins up and
down (no blocking) the x axis, but the last one transmits only spin down the z axis, what
fraction of particles leaving the first will leave the last?

Exercise 14.5.4. A beam of spin-1 particles, moving along the y axis, is incident on two
collinear SG apparatuses, the first with B along the z axis and the second with B along the
Z axis, which lies in the x-z plane at an angle 6 relative to the z axis. Both apparatuses
transmit only the uppermost beams. What fraction leaving the first will pass the second?
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Addition of Angular Momenta

15.1. A Simple Example

Consider a system of two spin-1/2 particles (whose orbital degrees of freedom
we ignore). If S; and S,I are their spin operators, the two-particle Hilbert space
V)2 is spanned by the four vectors

|s1m1 > @ | s2m2) = smy , 55m2) (15.1.1)

which obey
S3|sumy, samay =His(s;+ Dlsimy, s:mz) (15.1.2a)
S| s, Samn> = Aimy symy , Samp ) (i=1,2) (15.1.2b)

Since s;=1/2, and m;= +1/2 has freedom only in sign, let us use the compact notation
[+4>, 1+—>, |—+>, | ——) to denote the states. For instance,

|+=>=|si=3m,=3, s=3my=—3) (15.1.3)

€

and so on. These four vectors form the product basis. They represent states that have
well-defined values for the magnitude and z component of the individual spins.

Suppose now that we choose not to look at the individual spins but the system
as a whole. What are the possible values for the magnitude and z component of the
system spin, and what are the states that go with these values? This is a problem in
addition of angular momenta, which is the topic of this chapter.

$In terms of the operators S{” and S§* which act on the one-particle spaces, 8, =S{"®I® and S,=
IY®S?®.
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Consider the operator '
S=S8,+8S; (15.1.4)

which we call the total angular momentum operator. That S is indeed the total angular
momentum operator is supported by (1) our intuition; (2) the fact that it is the
generator of rotation for the product kets, i.e., rotations of the whole system; (3) the
fact that it obeys the commutation rules expected of a generator of rotations, namely.

[S:, S;1=Y, ifigyuSk (15.1.5

k ¥
as may be readily verified. Our problem is to find the eigenvalues and eigenvectors of
S? and S,. Consider first ‘

SZZS]ZJ’_SZZ (1516)

which commutes with S7, S%, Si., and S,.. We expect it to be diagonal in the
product basis. This is readily verified:

Sz|++>=(slz+sk)|++>=(§+g>|++>

SA+==0/+=>
Sd=+y=01—+)
S)=—y=—H-=>

Thus the allowed values for the total z component are #, 0, and —#.
By the method of images (or any other method)

++ = -+ -
1 0 0 0
0 0 0 0 (15.1.8)
S,/
pli)odpct 0 0 0 0
asis 0 0 0 -

Note that the eigenvalue s, =0 is twofold degenerate, and the eigenspace is spanned
by the vectors |[+—)> and |—+). If we form some linear combination,
al+—>+ B|—+>, we still get an eigenstate with 5.=0, but this state will not have
definite values for S|, and S,, (unless a or §=0).

Consider next the operator

S2=(S1+S) (S1+S) =81 +53+25,°S, (15.19)



Although S? commutes with S and S3, it does not commute with S, and S,, 405

because of the S-S, term, which has Si,, Sy, etc. in it. By explicit computation, ADDITION OF
ANGULAR
e -4 —— MOMENTA
2 0 0 0
[ 0 1 1 0 (15.1.10)
product 0 1 1 0
0 0 0 2

Thus we see that although [++) and |——) are eigenstates of S*[s(s+1)=2], the
states of zero S., namely, |+—) and |—+), are not. However, the following linear
combinations are:

[+=>+I=+>
72 (s=1)
(15.1.11)
e SR
2]/2 ( - )
" Exercise 15.1.1.* Derive Eqs. (15.1.10) and (15.1.11). It might help to use
S1°8, =818+ 3(S1455- + §1-834) (15.1.12)

This completes the solution to the problem we undertook. The allowed values
for total spin are s=1 and 0, while the allowed values of s, are #, 0, and —#. The
corresponding eigenstates in the product basis are

ls=1m=1, 5i=1/2s5=1/2>=|++)
[s=1m=0, s,=1/25=1/2>=2""[[+=>+|=+)]
Is=1lm=-1,5=1/25=1/2)=|—->
Is=0m=0, s;=1/285=1/2>=2"V|+=>—|—+)]

(15.1.13)

These vectors represent states with well-defined total angular momentum; they form
the total-s basis. The three spin-1 states are called triplets and the solitary spin-0
state is called the singlet. The problem of adding angular momenta is essentially a
change of basis, from one that diagonalizes (S 1,83, Si., S,.) to one that diagonalizes
(8% 8., 51, S3). We can describe our findings symbolically as

“ 120 1/2=1@0 (15.1.14)

which means that the direct product of two spin-1/2 Hilbert spaces is a direct sum
of a spin-1 space and a spin-0 space. The way the dimensionalities work out in
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Eq. (15.1.14) is as follows:

1
right-hand side: ) (2s+1)=1+3=4

s=0

left-hand side: (25, + )25+ 1)=(2x 1/2+ 1)(2x 1/2+1)=4 ‘
(15.1.1’

The decomposition of the direct product space into a sum over spaces with well-
defined total spin can also be viewed this way. The rotation operators for the entire
system will be 4 x 4 matrices in the product basis. These matrices are, however,
reducible: by changing to the total-s basis, they may be block diagonalized into a
3 x 3 block (spin-1 sector) and a 1x 1 block (spin-0 sector). The total-s basis i,
however, irreducible; we cannot further subdivide the spin-1 space into parts that
do not mix under rotations.

The total-s states have another property: they have definite symmetry under the
exchange of the two particles. The triplets are symmetric and the singlet is antisym-
metric. Now, the state vector for two identical spin-1/2 particles must be antisymmet-
ric under the exchange of particle labels, i.e., under the exchange of their spin and
orbital degrees of freedom. We already know that if Q is some orbital operator (built
out of coordinates and momenta), then

|02, SY=2""|w10:) + | 020, )]

and

o 02, A>=2_1/2[|(01(02>_ |00, ]

are symmetric and antisymmetric, respectively, under the exchange of the orbital
variable. To form the complete state vector, we simply multiply orbital and spin
states of opposite symmetry:

( +—>—|—+
|w1w2’S>®L%T/QI_>
++
@y, 02y, AY =1 :+_§+|_+> (15.1.1
loiw2, AD® T
\ I==>

These vectors provide a complete basis for the Hilbert space of two identical spin-
1/2 particles. As an example, consider the ground state of the He atom, which has
two electrons. In connection with the periodic table it was said that in this state of
lowest energy, both electrons are in the lowest orbital state [n=1, /=0, m=0)] and

1 If we neglect interelectron forces, the states allowed to the electrons are hydrogenlike, in that they are

labeled |n, /, m). But the energies and wave functions are obtained upon making the replacement
2T =252 —



k2
have opposite spins. We can sharpen that statement now. The orbital part of the
ground-state ket is just the direct product,

? lw,»>=1100)>®]100) (15.1.17)
whi;:h is already symmetric. So the spin part must be
(:>=27"2(1+=>=[—+>) (15.1.18)
and so
’ [ Weround) = W)@l %s» (15.1.19)

In this state, both the orbital and spin angular momenta are zero.

Let us now return to the problem of just the two spins (and no orbital coordi-
nates). Now that we have two bases, which one should we use? The answer depends
on the Hamiltonian. For instance, if the two spins only interact with an external
field B= Bk,

' H= —‘()/]Sl+)/282)'B=_BO(7/]S12+7/2S22) (15120)

the product basis, which diagonalizes ;. and S.. is the obvious choice. (If, however,
71=72, then Hoc S, and we can use the total-s basis as well.) On the other hand,
if the spins are mutually interacting and, say,

H=AS,"S;=3A(S*~ 81— 53 (15.1.21)
the total-s basis diagonalizes H.

Exercise 15.1.2.* In addition to the Coulomb interaction, there exists another, called the
kyperfine interaction, between the electron and proton in the hydrogen atom. The Hamiltonian
describing this interaction, which is due to the magnetic moments of the two particles is,

Hy=AS,"S, (4>0) (15.1.22)

(This formula assumes the orbital state of the electron is |1, 0, 0>.) The total Hamiltonian is
thus the Coulomb Hamiltonian plus H,.
(1) Show that H,, splits the ground state into two levels:

(15.1.23)

and that corresponding states are triplets and singlet, respectively.
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(2) Try to estimate the frequencCy of the emitted radiation as the atom jumps from
triplet to the singlet. To do so, you may assume that the electron and proton are two dipolg |
U and p, separated by a distance ao, with an interaction energy of the order}

~He Hp
___—ag

Hiy

Show that this implies that the constant in Eq. (15.1.22) is

2¢ (5.6)e 1
A~ ]
2me 2Mc ag

(where 5.6 is the g factor for the proton), and that
AE=E,—E =AW

is a correction of order (m/M)a? relative to the ground-state energy. Estimate that the
frequency of emitted radiation is a few tens of centimeters, using the mnemonics from Chapter
13. The measured value is 21.4 cm. This radiation, called the 2/-cm line, is a way to detect
hydrogen in other parts of the universe.

(3) Estimate the probability ratio P(triplet)/P(singlet) of hydrogen atoms in therma
equilibrium at room temperature.

15.2. The General Problem .

Consider now the general problem of adding two angular momenta J; and J,.
What are the eigenvalues and eigenkets of J> and J,, where J=J, +J,? One way to
find out is to mimic the last section: construct the (2j,+1) - (2j,+ 1)-dimensional
matrices J° and J. and diagonalize them. Now, J, will be diagonal in the product
basis itself, for

J2| iy, jomay = A(my + my)| iy, joma) (15.20)

It will be a degenerate operator, for there are many ways to build up a total m=
my +m,, except when m= (j; +j) when both angular momenta have maximal pro-
jections up/down the z axis. For instance, if m=; +j,—2, there are three product
kets: (m1 =j1 s m2=j2—2), (ml :j] - 1, ny =j2_ 1), and (m] :j1 _2, m2=j2). In each
of the degenerate eigenspaces of J,, we must choose a basis that diagonalizes J?
(and undiagonalizes J,. and J,.). We can do this by constructing the matrix J and
then diagonalizing it. But this can be a tedious business. (If you have done Exercise
15.1.1 you will know that the construction of S* is quite tedious even in this four-
dimensional case.) There is, however, a more efficient alternative to be described
now.

As a first step, we need to know the allowed values for j. Qur intuition and our
experience from the last section suggest that j can take on values ji+j,

I The description here is oversimplified ; both M and Hy, are rather tricky to derive. Our aim is just to
estimate | 4| and not to get into its precise origin.



[ il PR g j» (assuming ji = j2)-f Let us check this. The number of product

kets is (2ji+ 1) (22 + D). This must equal the number of total-j kets. According to
our conjecture, this number is

it ] hti i1
$ =Y @D Y @rD=@FDHERTD (152.2)
hr ;

j=h—h J j=0
using the formula

N(N+1)
2

N
Y n=
n=0
We take this to be proof of our conjecture:
1®h=(i i@ +jh—- D@ - -®U —Jj2) (15.2.3)
In other words, the total-j kets are
Um, jijay Wwith ji+jzjzi —jp,  jEm=] (15.2.4)

Let us write them in the form of an array:

i

" j]+j2 _]l+_]2—1 j]"‘jz
X s +i20 01 HJ20

i+ i 2= 1D i +j— L= 1
\jitj2 _+j2'2> |1 +j2— 171:1 +j2—2 |1 —J2s J1 —J2>
L +J2, —(h +,=2)> lh+h~ 1, —(i+i2—20 Ly =2, =G =2

\ji+j2, —Urt2™ 1)) liti—L —(i+i— 1
i +j2, —UrT72)?
(15.2.5)

o

(Note that the labels j,j2 are suppressed on the total-j kets. We shall do so frequently
to simplify the notation.)

Our problem is to €Xpress each of these kets as a linear combination of product
kets. To get an idea of how one goes about doing this, let us consider the problem

{ There is no loss of generality, for we can always call the larger one Ji-
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solved in the last section (j;=j,=1/2). In this case the states are
j

'”] 1 0
11, 15

11,05 10,05
I, =15

Y

Consider the top state in the first column, |1, 1>, which has the largest possible z
component. There is only one product state with the right value of m, namely, both
spins up. So by inspection,

(1, 1)=[++>

We can multiply the right-hand side by a phase factor, but we follow the convention,
called the Condon-Shortley convention, in which the coefficient of this top state is
chosen to be unity. Consider next the state below this one, namely, |1, 0>. There are
two product states with m =0, namely, |+—> and |—+); and |1, 0> must be a linear
combination of these. We find the combination as follows. We know that{

S_|1,1>=2"*#4|1,0)
so that

L

|1,0>:2]/2h

SO, 1)

But we do not want |1,0) in terms of |1, 1), we want it in terms of the product
kets. So we rewrite the right-hand side as

1 1

=%(Sl—+52~)l++>=21/zh (Al=+>+A+=>)

so that

11, 0>=2""2(j+=) +|—+>)

in accordance with our earlier result.

The next state |1, —1) can be obtained by lowering this one more step in
above sense, or more simply by noting that there is only one ket with m maximal}
negative, namely, |——>. So

L, =1>=]-->
Our phase convention is such that this is what you would get if you lowered |1

I Recall Jo|j, md>=Hh[Fm)(jxtm+ 11" j,mE1>.



This takes care of the j=1 states. Consider next j=0. The state |0, 0> has m=
0 and is also a linear combination of |+—) and |—+). We find the combination
using two constraints: (1) The combination must be orthogonal to the one that
forms the other state with m =0, namely, |1, 0> and have real coefficients.} (2) The
combination is normalized to unity. If we call the combination a|+—>+ |-+,
these constraints tell us that

a+p=0
a’+pP=1
It follows that
10,0 =27"2(|+=)>—|—+))
Note that we could still have multiplied the state by (—1). Our convention is as
follows: in each column in Eq. (15.2.5) the top state is given the overall sign which
makes the coefficient of the product ket with m; =j; positive.
Let us now turn to the general problem, Eq. (15.2.5). Once again the top state
in the first column, with m equal to its maximum value of j, + />, can be built out

of only one product ket, the one in which both angular momenta take on maximum
possible projections along the z axis:

|t oty =i, j2j2D (15.2.6)

The other m states at this value of ;j are obtained by lowering. Let us consider going
down just one step. Since

T+ v 2> =20+ ) P+ fas i+ 2= 1
we have, as in the spin-(1/2®1/2) problem
hti, i ti—1)
1
S S A ST
G +2)] A (i 2 )i a2y

1

TR0y 1R [A270) 21 i = 1), Jafod + F(202) L, oG — DY
1 2

. 1/2 . 172
=(”) mu~uﬁw+(”ﬂ L = 1)) (15.2.7)
St/ 1+ )2

Proceeding in this manner we can get to the bottom state in the first column.§
Now for the top state in the second column. Since it has m=j, +j,— 1, there
are two product kets that are eligible to enter the linear combination; they are

1 This is a matter of convention.
§In practice one goes only to m=0. The states of negative m can be found using special properties of
the expansion, to be discussed shortly.
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|jujrs J2(j2— 1)) and | ji(jy — 1), j2j2). The combination must be normalized to unity.
be orthogonal to the other state formed out of these kets, namely, | ji+/2,/1+j- 1,
[see Eq. (15.2.7)], and by convention have real coefficients. The answer is, by
inspection,

RN
iti—Lj +f2—1>=< .J] ) [jijrs (2= 1))
Jith
12
J L. . .
—( 2 ) LG = 1), jaj2)
Jiti2

¥

The overall sign is fixed by requirement that the coefficient of the product ket with
m; =j, be positive. Given the top state, the rest of the second column may be obtained
by lowering. Let us go just one more column. The top state in the third column,
|j1+j2—2,jitj>—2), can be a superposition of three product kets. The three (reaf)
coefficients are determined by these three requirements: orthogonality to the two
preceding total-j kets of the same m, and unit normalization. It is clear that there
are always enough constraints to determine the top states of each column, and once

the top states are known, the rest follow by lowering. .

-

Exercise 15.2.1. (1) Verify that |jji,/,j.> is indeed a state of j=j, +j, by letting
JP=J3+ T3+ 200+ Jyadao+ Ji_Joy act on it

(2) (optional) Verify that the right-hand side of Eq. (15.2.8) indeed has angular momen-
tum j=j,+j,— 1.

Clebsch—-Gordan (CG) Coefficients

The completeness of the product kets allows us to write the totalj kets as

Ljm, jij2) =Y Y Ly, jama > {Gimy, jomal jm, i o)

my.m
The coefficients of the expansion

Chmy, joma| jm, jija ) = (juma, jamo| jm)
are called Clebsch-Gordan coefficients or vector addition coefficients. (Since the labels

J1j2 appear in the bra, we suppress them in the ket.) Here are some properties of
these coefficients:

(1) {my, omo|jmy #0  onlyif ji—p<j<j +), (15.29)

(This is called the triangle inequality, for geometrically it means that we must be able
to form a triangle with sides j;, j», and j).

(2) {umy,jama|jmy #0 onlyif my+m;=m (15.2.10)

(3) they are real (conventional)



@ rjr,J2(G— )| Jj > 1s positive (conventional)

(This condition fixes the overall sign in the expansion of each top state and was
invoked in the preceding discussion.)

(5) i, joma| jmy = (=) TR G (=my), jo( =) | f(—m) > (15.2.11)

This relation halves the work we have to do: we start at the top state and work our
way down to m=0 (or 1/2 if j is half-integral). The coefficients for the negative m
states are then determined by this relation.

Exercise 15.2.2.* Find the CG coefficients of

(1) :®@1=3@3
Q) 1®1=28180

Nl—

@

N —

Exercise 15.2.3. Argue that 3®3®3 =@

If we assemble the CG coefficients into a matrix, we find it is orthogonal (real
and unitary). This follows from the fact that it relates one orthonormal basis to
another. If we invert the matrix, we can write the product kets in terms of total-j
kets. The coefficients in this expansion are also CG coefficients:

':\ Gm)jimy, jama > = iy, jomg| jm) * = (imy , jamo| jm)

because the CG coefficients are real. As an example, consider the 3®3 problem.
There we have

| jm> |mymsy)
11, 1> 1 0 0 O I1++>
1,05 | [0 1722 172'2 0| |+-
1,-1>] |0 o 0 | -+
|0, 0} 0 127 —172'2 o] |-—>

(Notice that the columns contain not the components of vectors, but the basis vectors
themselves.) We can invert this relation to get

[++>1 1 0 0 0 1, 1>
I+=>| 0 17272 0 1722 || 1,0
=5 |0 1722 0 =122 (|1, -1>
I-->] |0 o0 1 0 10,0
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Thus we can write
|+—>=2""2(]1,05+10,0))

etc. In practice one uses CG coefficients to go both ways, from the product to f
total-j basis and vice versa.

Addition of L and S

Consider an electron bound to a proton in a state of orbital angular mome
I. Since the electron has spin 1/2, its total angular momentum J=L+8 can ha
values of j=/+1/2. We wish to express the total-/ states in terms of product stak

lIm,, sm,>.} Since m,= +1/2, at each m there will be at the most two eligible produ
kets.§ Let

j=1+1/2,my=a)l,m=1/2;1/2,1/25+Bll, m+1/2;1/2,-1/2> (1521
=1-1/2,m>=a|,m—=1/2;1/2, 1/2>+ B'|l,m+1/2;1/2, —1/2> (15.2.11

The requirement that these states be orthonormal tells us that

a’+ pi=1 (15.2.14
a’+pr=1 (15.2.15
aa'+Bp =0 (15.2.16

So we only need one more constraint, say the ratio a/f. We find it by demandin
that

Jj=1+1/2, my =R+ 1/2)(1+3/2)|j=1+1/2, m) (15.2.17
Writing
JP=L*+S*+2L.S.+L_S.+L.S_ (15218

we can deduce that

1/2
E=<w> (15.2.19)
a

[+1/24+m

1 Here, m,, m,, and m stand for orbital, spin, and total projections along the z axis.

§ It might help to construct the table as in Eq. (15.2.5). It will contain just two columns, one for j=I+1/
2 and one for j=1—1/2.



Given this, and our convention for the overall sign,

. _ 1 1/2 _ .
|j=1£1/2,m) ———(21+1)1/2[i(l+1/2:tm) 1Lm—1/2;1/2,1/2)
‘ FUH12Fm) AL m+1/2; 172, —1/2)] (15.2.20)

[Notice that if j=/+1/2, m= £(/+ 1 /2); only one term survives with unit coeflicient.]
If the Hamiltonian contains just the Coulomb interaction, or, in addition, an inter-
action with a weak constant magnetic field, the product basis is adequate. The total-
J basis will come in handy when we study the spin—-orbit interaction [which involves
the operator L-S= 3(J>—L*— §?)] in Chapter 17.

Exercise 15.2.4. Derive Egs. (15.2.19) and (15.2.20).

Exercise 15.2.5.* (1) Show that P, =37+ (S, Sy)/# and Py = I~ (S, -8,)/# are projec-
tion operators, ie., obey PP;=6,P, [use Eq. (14.3.39)].
(2) Show that these project into the spin-1 and spin-0 spaces in ;®3 = 1@0.

Exercise 15.2.6. Construct the project operators P, for the j=/+1/2 subspaces in the
addition L+S=1J.

Exercise 15.2.7. Show that when we add j, to j,, the states with j=2j, are symmetric.
Show that the states with j=2j;=1 are antisymmetric. (Argue for the symmetry of the top
states and show that lowering does not change symmetry.) This pattern of alternating symme-
try continues as j decreases, but is harder to prove.

The Modified Spectroscopic Notation

In the absence of spin, it is sufficient to use a single letter such as s, p, d, . . . to
denote the (orbital) angular momentum of a particle. In the presence of spin one
changes the notation as follows:

(1) Use capital letters S, P, D, . .. (let us call a typical letter L), to indicate the value
of the orbital angular momentum.

(2) Append a subscript J to the right of L to indicate the j value.

(3) Append a superscript 25+ 1 to the left of L to indicate the multiplicity due to
spin projections.

Thus, for example
25 +1 __2
L;="Ps),

denotes a state with /=1, s=1/2, j=3/2. For a single electron the 25+ 1 label
is redundant and always equals 2. For a multielectron system, S and L stand
L
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-
for total spin and total orbital angular momentum, and J for their sum. Thus
in the ground state of He,

285 +1 _
L;="So

15.3. Irreducible Tensor Operators

We have already discussed scalar and vector operators. A scalar operator §
transforms like a scalar under rotations, i.e., remains invariant:

S-S’ =U'[RISU[R]=S (15.3.1)

By considering arbitrary infinitesimal rotations we may deduce that

[J,', S] =0
or in a form that will be used later
[J:,S]1=0
(1532
[/;,S]=0

Examples of S are rotationally invariant Hamiltonians such as the Coulomb or
isotropic oscillator Hamiltonian. A vector operator V was defined as a collection of
three operators (V,, V,, V,) which transform as the components of a vector in V*(R):

Vi=Vi=U'[RIV;UIR]=Y R;V; (15.33)
J

where R is the usual 3 x 3 rotation matrix. By considering infinitesimal rotations, we
may deduce that [Eq. (12.4.14)]:

Vi, 1=k Y euVia (15.34)
k

Let us rewrite Eq. (15.3.3) in an equivalent form. Replace R by R™' = R” everywhere
to get ;

U[R\VU'[RI=Y R:V; (15.35)

Notice that we are summing now over the first index of R. This seems peculiar, for
we are accustomed to the likes of Eq. (15.3.3) where the sum is over the second
index. The relation of Eq. (15.3.3) to Eq. (15.3.5) is the following. Let |1), |2, and
|3> be basis kets in V*(R) and R a rotation operator on it. If | V) is some vector



with components v;= {i| V'), its rotated version |¥’'>=R[V > has components

b= CRIVY=F ARGV =T Ryty (153.6)

If instead we ask what R does to the basis, we find |i>—|i"> = R|i> where

i =Riiy=Y [/ >RI>=E Ril > (15.37)

Since R;=(R™');, we see that vector components and the basis vectors transform in
“opposite” ways. Equation (15.3.3) defines a vector operator as one whose compo-
nents transform under V,»U'V,U as do components of a vector |V) under
[Vy—~R| V>, while Eq. (15.3.5) defines it as one whose components V; transform
under Vi—»UV,U" as do the kets |i) under |i>— R|i>. Both definitions are of course
equivalent. The first played a prominent role in the past and the second will play a
prominent role in what follows.

Tensor Operators

We know that a vector | V') is an element of V3(R), i.e., may be written as

Vo= i oli) (15.3.8)

1

in terms of its components v, and the basis kets |i>. A second-rank tensor |T®) is
an element of the direct product space V*(R)®V>(R), spanned by the nine kets

1DH®1j>:

ITY=3 ¥ t]d>®[j> (15.3.9)

i=1 j=1

One refers to t; as the components of | T in the basis |I>®|j ).

As in the case of vectors, a tensor operator of rank 2 is a collection of nine
operators T; which, under 7;,—» U TT,»,»U, respond as do the tensor components ¢;, or,
equivalently, under T;—» UT,U * respond as do the basis kets |i>®|j>. Tensors and
tensor operators of rank #>2 are defined in a similar way. (Note that a vector may
be viewed as a tensor of rank 1.) We shall call these tensors Cartesian tensors.

Of greater interest to us are objects called spherical tensor operators. A spherical
tensor aperator of rank k has 2k+ 1 components Ty, g= +k, (k—1), ..., ~k, which,
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under T;—UTIU ' respond like the angular momentum eigenkets | j=k, m=¢)=

|k51>1:

UIRITIU'[R] =Y DXTY (153,
-

Since the 2k + 1 kets |kg) transform irreducibly, so do the operators 77;. For this
reason, they are also called irreducible tensor operators.

By considering infinitesimal rotations, we may deduce from Eq. (15.3.10) that
(Exercise 15.3.1):

Ve, T =2A[(kFq)(k£q+1)]'*TF*!

(15.3.11)
[J., T!=#gT?

Notice that commuting a J with 77§ is like letting J act on the ket |kg).

Why are irreducible tensor operators interesting? Consider the effect of acting
on a state |a/m) with T}. (Here ¢ denotes labels besides angular momentum.) Let
us rotate the resulting state and see what happens:

U[RIT{ jm)=U[RIT{U'[RIU[R]| jm)
=Y D{ITLY Dl jm'>
q m

=Y. ¥ DSIDG,TH| jm'> (15.3.12)
qg m

- We find that Tj|jm) responds to rotations like the product ket |kg>®| jm). Thus,

when we act on a state with T, we add angular momentum (k, q) to the state. In
other words, an irreducible tensor operator T imparts a definite amount of angular
momentum (k, ¢) to the state it acts on. This allows us to say the following about
matrix elements of T} between angular momentum eigenstates:

{ajm|T{lejmy=0 unless k+jzj'2|k—jl, m'=m+q (15313

This is because T';| ajm) contains only those angular momenta that can be obtainag
by adding (k, g) and (j, m); so |aj’m’) is orthogonal to T|jm) unless (j', m') i
one of the possible results of adding (k, ¢) and (j, m). Equation (15.3.13) is an
example of a selection rule.

Let us consider some examples, starting with the tensor operator of rank 0. It
has only one component 73, which transforms like [00), i.e., remains invariant.

I Recall that
lkg>—U[Rlkg>=3. 3 |K'q ><k'q|U[R)Ikq)
ol

=Y. Dyjlkq">
2



Thus T§ is just a scalar operator S, discussed earlier. Our selection rule tells us that

(a'j'm|Tylajm>=0 unless j=j, m=m (15.3.14)

Consider next T (¢g=1,0, —1). Here we have three objects that go into each
other under rotations. Since a vector operator V also has three components that
transform irreducibly (why?) into each other, we conjecture that some linear combi-
nations of the vector operator components should equal each T} . In fact

B

V.xiV
TY'=7F N Y=yt
(15.3.15)%
Ti=v.="}

Given Eq. (15.3.4) and the above definitions, it may be readily verified that ¥'}' and
V1 obey Eq. (15.3.11) with k=1, g==1, 0. The selection rule for, say, V, is

o . Vil
(ajm|Vx|a]m>=<a]m|—2lT|ajm>

¥ —0 unless j+1>j'>[j—1, m=m=l (153.16a)
and likewise

(aj'm|V]ajmy=a'j'm'| Vi ajm)
=0 wunless j+1>j'>|j—1], m=m (15.3.16b)

" Once we go beyond rank 1, it is no longer possible to express Cartesian and
spherical tensors of the same rank in terms of each other. A Cartesian tensor of rank
nhas 3" components, whereas a spherical tensor of rank k& has (2k+ 1) components.
For n=0 and rn=1, the Cartesian tensors happened to have the same number of
components as spherical tensors of rank k=0 and 1, respectively, and also trans-
formed irreducibly. But consider higher ranks, say rank 2. The tensor T has five
components that transform irreducibly. The tensor T} has nine components which
transform reducibly, i.e., it is possible to form combinations of T} such that some
of them never mix with others under rotations. There is one combination that is
invariant, i.e., transforms like T9; there are three combinations that transform like
a vector or in light of Eq. (15.3.15) like 7'{; and finally there are five that transform
like 79. We will see what these combinations are when we study the degeneracy of
the isotropic oscillator of a few pages hence. Cartesian tensors of higher rank are
likewise reducible. Let us now return to the selection rule, Eq. (15.3.13).

We can go a step further and relate the nonvanishing matrix elements. Con-
sider the concrete example of R{, the position operator in spherical form. We have

1In the special case V=1J, Ji'=F(J,+J,)/2"?=FJ,/2"* and J9=1..
Y
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{aalmy)| R‘ﬂ alim )

1/2
= fRzzlz(r) Y’IZE(H’ ¢)r<i37£> Y‘{Ralll(r) YZ”(H’ ¢)r2 dr dQ)

. 172 )
=<~3—> f R}, Ro 7 dr - f YR Y{Y7 dQ
= <azlzl ,Rll la,ll> . <lzm2] lq, llm1> (15317)1

where {(a.b||Ri||ail), the reduced matrix element, is independent of m;, m,, and g.
which appear only in the CG coefficient, which is essentially the angular integral (up toa
factor independent of m,, m,, and q).

This example illustrates a general result (not proven here): *

{azjoma| Tilarjimyy = ool | Tl @11y - {omalkeyq, jimy) (15.3.18)

This is called the Wigner—Eckart theorem. It separates the dependence of the matrix
element on spatial orientation (on m,, m;, and g) from the rest. The former is
expressed entirely in terms of the CG coefficients. 3

Exercise 15.3.1. (1) Show that Eq. (15.3.11) follows from Eq. (15.3.10) when one consid-
ers infinitesimal rotations. (Hint: DY) = (kq'|I— (i58-J)/Alkq). Pick 6@ along, say, the x
direction and then generalize the result to the other directions.)

(2) Verify that the spherical tensor F{ constructed out of V as in Eq. (15.3.15) obeys
Eq. (15.3.11).

Exercise 15.3.2. 1t is claimed that ¥, (—1)?S7T% ? is a scalar operator. %

(1) For k=1, verify that this is just S-T. :

(2) Prove it in general by considering its response to a rotation. [Hint

DY), = (=1)"""(DY))*]

Exercise 15.3.3. (1) Using {jj|jj, 10>=1[j/(G+1)]'/* show that
(I @]’ = 8o dshli(j+1)]'?

(2) Using J*A=J,A.+ 5(J_A, +J,A_) (where A, =A,+id,) argue that d
ajm/|J- Alajm) =claj| |4l laj)

where ¢ is a constant independent of @, ¢’ and A. Show that ¢=A[j(j+ 1)]**28m .
(3) Using the above, show that

Cajm|J-Alajm)

oy mam (153,

{a’jm| A% ajm) =

1 Note that R is the tensor operator and R (r) is the radial part of the wave function. We have al
used Eq. (12.5.42) to obtain R].



Exercise 15.3.4.% (1) Consider a system whose angular momentum consists of two parts
J; and J, and whose magnetic moment is

p=ydi+7y2d>
In a state | jm, j, j>> show, using Eq. (15.3.19), that
=<2 =0

<ﬂz>:mh[71+72+(71—72) jl(j.+1>—j2(jz+1)}
2 2 JU+1)

(2) Apply this to the problem of a proton (g =5.6) in a >P, , state and show that {u,> =
10.26 nuclear magnetons.
(3) For an electron in a >P; , state show that (u.>= +3 Bohr magnetons.

Exercise 15.3.5.* Show that {jm|Tj|jm)>=0 if k> 2j.

154. Explanation of Some “Accidental” Degeneracies

In this section the degeneracy of states of different / at a given value of # in the
hydrogen atom and the isotropic oscillator (see Section 12.6) will be explained. But
first let us decide what it means to explain any degeneracy. Consider for example
the (2/+ 1)-fold degeneracy of the different m states at a given / in both these prob-
lems. We explain it in terms of the rotational invariance of the Hamiltonian as
follows :

(1) For every rotation R(8) on V*(R) there exists a unitary operator U[R]
which rotates the vector operators

U'VU=Y Ry, (154.1)

J

If the Hamiltonian depends only on the “lengths” of various vector operators like
P, R, L etc., then it is rotationally invariant:

U'HU=H (15.4.2)

ie., rotations are symmetries of H. This is the case for the two problems in question.
(2) If we write this relation in infinitesimal form, we find

[H, L]}=0, i=1,2,3 (15.4.3)

where L; are the generators of rotation. For every free parameter that defines a
rotation (8., 6,, and ) there is a corresponding generator. They are all conserved.
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(3) From the three generators we construct the operator
L_=L.—ilL, (15449
which lowers the m value:
Ll,my=cll,m—1> (15.4.5)

Since [L, H1=0, the lowering operation does not change the energy.

This explains the degeneracy in m, for, starting with the state of highest mata
given /, we can go down all the way to the lowest m without changing the energy.
(We can equally well work with L, .)

Let us try to do the same for the two problems in question. We follow these
steps:

Step (1): Identify symmetries of H besides rotational invariance.

Step (2): Find the generators of the symmetry transformations.

Step (3): Construct an operator from these generators that can change / by one unit
in the case of hydrogen and two units in the case of the oscillator.

Hydrogen *

Steps (1) and (2). Unfortunately the only obvious symmetry of the Coulomb
Hamiltonian is rotational invariance. The additional symmetry, the one we are after.
is very subtle and clearest in momentum space. We will not discuss it. But how then
do we go to step (2)? The answer lies in the fact that the generators of the symmetry
are conserved quantities. Now we have seen that the Coulomb problem admits an
extra conserved quantity, the Runge-Lenz vector. Thus the three components of

&R
(X2+ Y2+Z2)1/2

1
N=—(PxL-LxP)— (15.4.6)
2m

must be the generators of the additional symmetry transformations (or linear combi-
nations thereof).

Step (3). Since we wish to talk about angular momentum let us write N in
spherical form:

N.+iN,
2! (154.7)
NY=N. .

Ni'=%F

»

Consider the state |nll> of the H-atom. Acting on it with N, we get another state
of the same energy or same # (since [H, N1} =0) but with higher angular momentum:
Ni|nll) behaves as [11>®(U>=|l+1,I+1). So

Nia, I I>=cln, I+1,1+1)> (15.48)



(It will turn out that ¢ vanishes when /= /. =n—1.) Using Ni we can connect all
the different / states at a given », and using L_ we can connect all the m states at a
given /. For example, at #=3 the network that connects degenerate states is as
follows:

0
3 22 M

31 1 /M

* L_

|-

g M3 10 3 2 1

(3,0’0) ll‘ :

31 -1 32 (=2)

The Oscillator
Step (1). To find the extra symmetry of H, let us look at it again:

P}+P+P? 1
=——r 4

H —p*(X*+Y*+ 2% (15.4.9)
2u 2

We say H is rotationally invariant because it depends only on the lengths squared
of the (real) vectors P and R. Let us now rewrite H in a way that reveals the extra
symmetry. Define a complex vector (operator) whose real and imaginary parts are
proportional to R and P:

1
3=W(pr+IP) (15410)

and its adjoint, whose components are complex conjugates of those of a:

1
a*zW(uwR—fP) (15.4.11)

The components of a and a' are just the lowering and raising operators for the x,
y, and z oscillators. They obey

" [ai,a;]=5y
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In terms of a and a’,
H=lw(a -a+3/2) (15413

Thus we find that H is a function of the length squared of a complex three-dimen-
sional vector a. So it is invariant under “rotations” in V>(C), i.e., under unitary .
transformations in V>(C). Just as we denoted the rotations in V*(R) by R, let us
call these C.} For every “rotation” C (unitary transformation) in V*(C), there wil
exist Hilbert space operators U[C] which rotate the complex vector operator a:

a~a,=U'[ClaU[C]=Y C;q (15.413)

J

where C; are matrix elements of the unitary operator C in V*(C). Since H depends .
only on the norm squared of a,

U'[CIHU[C]=H (15.4.14)

Step (2). How many generators of U[C] are there and what are they? The
answer to the first part is the number of parameters that define a rotation in V*(C),
i.e., the number of independent parameters in a 3 x 3 unitary matrix C. Now any
such matrix can be written as

C=e® a5

where Q is a 3 x 3 Hermitian matrix. It is easy to see that Q has three real diagonal
elements and three independent complex off-diagonal elements. Thus it depends on
nine real parameters. So there are nine conserved generators. What are they? Rather
than deduce them (as we did the L’s by considering the effect of infinitesimal rotations
on ) we write down the nine conserved quantities by inspection. It is clear tjatin
the oscillator case, the nine operators %

Ty=adla;  (i,j=x,y, 0rz2) (15.4.16)

are conserved. The proof is simple: a; destroys a j quantum and al creates an i
quantum and this leaves the energy invariant since the x, p, and z oscillators have the
same o (isotropy). To see what impact 7}; has on / degeneracy, we must decompose T,
into its irreducible parts.

Consider first the combination

Tr T=Ty+ T+ T..=dla,+dla,+adla.=2a"-a (15.4.17)
This is clearly a scalar, i.e., transforms like 7. The fact that it commutes with #
does not explain the degeneracy in / because it “‘carries” no angular momentum. In

fact a'-a is just H up to a scale factor and an additive constant. i

I We should really be calling these U. But that will complicate the notation.



Consider next the three antisymmetric combinations

T, — Tyx=alay—a;ax= (afr xa);
Tyz—sz=(aT X a), (15.4.18)
T,,—T.= (aJr X a),

These clearly transform as a vector V=a'xa. There seems to be a problem here.
Suppose we form the operator Vi=—(V,+iV,)/2". Then we expect

Vilnlly=cln, I+1,1+1) (15.4.19)

asin Eq. (15.4.8). This would mean that states differing by ore unit in [ are degener-
ate. But we know from Section 12.6 that states differing by two units in / are degener-
ate. So how do we get out of the fix? To find out, you must work out any one of
the components of the operator V=2a'xa in terms of R and P. If you do, you will
we that ¢ in Eq. (15.4.19) is really zero, and the paradox will be resolved.

We are now left with 9—1—3=25 degrees of freedom out of the original nine
T;’s. We argue that these must transform irreducibly. Why? Suppose the contrary is
true. Then it must be possible to form irreducible tensors with fewer than five compo-
nents out of these residual degrees of freedom. The only possibilities are tensors with
1 or 3 components, that is to say, scalars or vectors. But we know that given two
vectors a' and a we can form only one scalar, a'-a and only one vector a’ x a, both
of which we have already used up. So we are driven to the conclusion that the five
residual degrees of freedom are linear combinations of some T%. One usually refers
to this object as the quadrupole tensor Qi. All we need here is the component 03,
since

QAnlly=cln, 1+2,1+2) (15.4.20)

which explains the degeneracy in / at each n. (When [=n= I, ¢ vanishes.)

Let us explicitly construct the operator Q3 in terms of ala; to gain some experi-
ence. Now a and a' are vector operators from which we can form the tensor operators
f and (a"){ which behave like |1, ¢>. The product a:-raj then behaves like the direct
product of (linear combinations) of two spin-1 objects. Since Q3 behaves like [22)
and since |22)> =|11>®]|11), we deduce that

03 =(ahi(a)

al+ ia; axtia,
9172 5172

ilata,— a;r,ay+ i(aiay+a;r,ax)] (15.4.21)

Other components of Qf may be constructed by similar techniques. (It is just a
matter of adding angular momenta 1®1 to get 2.) Starting with the smallest value
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of [ at each n (namely, 0 or 1), we can move up in steps of 2 until we reach /=n, a
which point ¢ in Eq. (15.4.20) will vanish. The network for n=4 is shown below:

4 4 4 %

0

o
4 2 2

4 2 1

4 2:(—2) 4 4:(—4)

4 0 0)

This completes the explanation of the degeneracy of the oscillator.

The Free-Particle Solutions

We examine the free-particle solutions from Section 12.6 in the light of the
preceding discussion. Here again we have a case where states with different /, in fact
an infinite number of them, are degenerate at each energy E= #’k”/2u. This degenery
acy is, however, not “accidental,” since the extra symmetry of the free-particle Hamik
tonian, namely, translational invariance, is obvious. We therefore have a conse
vector operator P from which we can form P,,} which can raise / and m by one
unit. Thus, given the state with /=m =0, we can move up in / using

|klly = c(P,) k00>

where ¢ is some normalization constant.
Recall that in the coordinate basis it was easy to find

Uo(p) Y?

(153.23}
|

where p=kr, and Up(p) is sin p or —cos p (regular or irregular solutions). It is eas
to verify that

15005 — Y00 =

1 d|U
P+|k00>—d_—" —ik(x+iy)—- 7 |: 0(p):| Y9
cocg'aslir;ate r r p

UO(P)]
p

(15424
#®

I P.=P,+iP, s, up to a scale factor (—2'/%) which does not change its rotational properties, just P}.

1 d
=Ci(x+1iy)— —[
pdp



i ]

where C, has absorbed all the factors that have no p dependence. If we operate once 427
again with P, and use [P, R.]=0 (where R, = R,+iR,CR}), we get ADDITION OF
5 ANGULAR
1 8\ U MOMENTA
(P+)2|k00>—>Cz(x+iy)2<— —) Ualp) (15.4.25)
pdp/ p
and so finally
I
1 d\ U
(P+)'k00Y > yiu= C/(x+ iy)l(— —~> Golp)
pdp/ p
!
~ : 1d
= C,(sin 0)' e’1¢pl(— __) Uo(p)
pdp/ p
!
= 1 d\ U
= 1Y§p’<— _) o(p)
pdp/ p
=R/Y} (15.4.26)
where
= (1 a\Ulp) =z ,1 d\
R;= 51P1<— —“> —p) ~1P1(“ —> Ro(p) (15.4.27)
pdp/ p p dp

This agrees with Eq. (12.6.29) if we set C;=(—1)"



Appendix

A.1. Matrix Inversion

This brief section is included only to help you understand Eq. (1.8.5) in the
main text and is by no means comprehensive.
Consider the inversion of a 3 X 3 matrix

a; a 4as
M= bl b2 b3 (All)
¢y € €3

The elements of M have been named in this way rather than as M, for in the
following discussion we will treat the rows as components of the vectors A, B, and
C, i.e., in the notation of vector analysis (which we will follow in this section),

A=aji+ay+ask and so on

Consider next a triplet of vectors

AR=B>< C
Bx=CxA (A.1.2)
CR‘——AXB 655
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which are said to be reciprocal to A, B, and C. In general,
i
A-Az#0, A'Br=A-Cz=0 and cyclic permutations (A13)

If we construct now a matrix M (called the cofactor transpose of M) whose columns
are the reciprocal vectors,

B (ar)1 (br)1 (cr)
M=} (ag), (br)2 (cr)2
(ar)s (br)s (cr)s

then

AAr A'Br A'Cq A-Ap 0 0
M- M: B'AR B'BR B'CR = 0 B'BR 0 (A14)
C‘AR C‘BR C‘CR 0 0 C'CR

Now all three diagonal elements are equal:

AAz=A-(BxC)=B+(CxA)=B-Bp=C-(AxB)=C-Cx 1
=det M (A.L5)

where the last equality follows from the fact that the cross product may be written
as a determinant:

i j k
BxC=|b, b, bs (A.16)
¢y C2 €3

{(We shall follow the convention of using two vertical lines to denote a determinant.)

Hence the inverse of the matrix M is given by 1
M
= (A7)
det M

When does det M vanish? If one of the vectors, say C, is a linear combination
of the other two; for if

C=aA+ B
then

ABxC)=A-(BxaA)+A-(Bx fB)=B-(aAxA)=0



Thus the determinant vanishes if the rows of the matrix are not linearly independent
(L) and vice versa. If the matrix is used to represent three simultaneous equations,
it means not all three equations are independent. The method can be generalized for
inverting n X n matrices, with real or complex elements. One defines a cross product
of n—1 vectors as

i ik

(i) (a1)2

A]XAzx"‘An_1= (Al8)

(an—l)l (an—l)Z . . (an—l)n

The resulting vector is orthogonal to the ones in the product, changes sign when we
interchange any two of the adjacent ones, and so on, just like its three-dimensional
counterpart. If we have a matrix M, whose n rows may be identified with n vectors,
A, A,, ..., A, then the cofactor transpose has as its columns the reciprocal vectors
A]R, ey AnRa where

Ajg=Aj 1 XAj X ApX Ay X Ay (A.1.9)

One tricky point: the cross product is defined to be orthogonal to the vectors
in the product with respect to an inner product

A'BzzA,'Bi
and not
A'B:‘ZA,*B,

even when the components of A are complex. There is no contradiction here, for
the vectors A,, ..., A, are fictitious objects that enter a mnemonic and not the
elements of the space V"(C) on which the operator acts.

Exercise A.1.1. Using the method described above, show that

2 1 3 1 -2 1
0 2 = 2 -5 4
-1 1 1 —1 3 -2
and
2 I 3! ) —4 5 1
4 1 2 =1—2 8§ -4 -8
0 -1 2 4 -2 2
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Theorem A.1.1. If Q|V> =0 implies | V> =]0) then Q' exists.
Proof. Let |V)),...,|V,) bea LI basis in V". Then another LI basis is gener-
ated by the action of Q, i.e., Q|V\D, ..., Q|V,) is also a LI basis. To see this, let us

assume the contrary, that there exists a relation of the form

2 aQVy=0
with not all @;=0. Upon pulling out , because it is linear, we get

Q (z a V,~>) =0
which, when combined with the assumed property of Q, implies that

% ailViy=10)

with not all @;=0, which is not true. So we can conclude that every vector |V’ in
V" may be written as a unique linear combination in the new basis generated by Q
as

V=% eV

In terms of [V) =) a/V.), we see that every | V') in V" may be written as
[Vo>=QV)

where | V') is unigue. In other words, we can think of every | V') in V" as arising

from a unigue source | V) in V" under the action of Q. Define an operator A whose

action on any vector | V> in V" is to take it back to its unique source | V). (If the

source of | V') were not unique—say, because there are two vectors | V) and | V2)

that are mapped into | V") by Q—then we could not define A, for acting on | V"), it
would not know whether to give | V1) or | V3).) The action of A is then

AlVS=\V>, where |V >=Q|V>
We may identify A as the inverse of €,

A=Q7" or AQ

I
~

since for any | V') in V*

AlVY=AQIV>=|V> QED.



A.2. Gaussian Integrals

We discuss here all the Gaussian integrals that we will need. Consider

Ia)= j e dx, a>0 (A2.1)

—ao

This integral cannot be evaluated by conventional methods. The trick is to consider

Iﬁ(a)=j e de e’ dy=J j e dx dy

) —~oC —o0 [ee]

Switching to polar coordinates in the x-y plane,

e} 2x
Ii(a)= j J e “"pdpd
0 0
=7r/a
Therefore
Ia)=(n/a)'"? (A.2.2)

By differentiating with respect to a we can get all the integrals of the form
L,(a) =J x* e dx
For example,

L(a) =j x? e dx= _5£ J e dx

a

172

0 1 (x

=27 =—{Z A23
e ola) 2a (a) ( )

The integrals I, (@) vanish because these are integrals of odd functions over an
even interval —oo to +oo. Equations (A.2.2) and (A.2.3) are valid even if « is purely
imaginary.

Consider next

I(a, B)= J e oA gy (A.2.4)
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By completing the square on the exponent, we get

0 1/2
Io(a, B)=e"'* J e e TA2a gy = FAe (E> (A.2.5)
— (4

o

These results are valid even if @ and B are complex, provided Re a > 0. Finally, by
applying to both sides of the equation

the operator (—d/da)", we obtain
J r’ e_'" dr= ﬁ
a
0

Consider this integral with a=1 and »n replaced by z—1, where z is an arbitrary
complex number. This defines the gamma function T'(z)

F(z)=f e dr
0

For real, positive and integral z,

I'=0c-1n!

A.3. Complex Numbers

A complex variable z can be written in terms of two real variables x and y, and
i=(—-1'? as

Its complex conjugate z* is defined to be
*=x—iy (A32)

One may invert these two equations to express the real and imaginary parts, x and
¥, as

x=3(z+z%), y=(z—z%/2i (A.3.3)



The modulus squared of z, defined to be zz*, equals
zz* sz’ =(x+ i) (x—iy) =x*+)* (A3.4)
You may verify that z=7z" implies that x=x' and y =)' by considering the modulus

of z—z7".
From the power-series expansions

sinx=x—x"/314+x>/5!—- - -

cos x=1—x*/21+x*/41—- - -
one can deduce that

e*=cos x+isinx (A.3.5)

It is clear that ¢ has unit modulus (x is real).
The expression z=x+ iy gives z in Cartesian form. The polar form is

_ .2 172 x . Y
z=x+iy={(x +y2) / {(x2+y2)'/2+l (x2+y2)1/2}

= p(cos §+isin 0)

=pe®
where

1/2

p=(*+y)"* and O=tan"'(y/x) (A.3.6)

Clearly
lzZj=p (A3.7)
Each complex number z=x+ iy may be visualized as a point (x, y) in the x-y plane.

This plane is also called the complex z plane.

A.4. The ic Prescription

We will now derive and interpret the formula

1 1
—=P —+in5(x) (A.4.1)
xTFie X
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where €0 is a positive infinitesimally small quantity. Consider an integral of the
form

I=1lim M (A42)

e=0 ) XTIE
Viewing this as the integral on the real axis of the complex z=x+ iy plane, we see
that the integrand has an explicit pole at z=i¢ in addition to any singularities f
might have. We assume f has no singularities on or infinitesimally close to the real
axis. As long as ¢ is fixed, there is no problem with the integral. For example, if f
has some poles in the upper half-plane and vanishes fast enough to permit our closing
the contour in the upper half-plane, the integral equals 2zi times the sum of the
residues of the poles of f and the pole at z=ig. Likewise, if we change the sign of
the & term, we simply drop the contribution from the explicit pole, which is now in
the lower half-plane.

What if £—0? Now the pole is going to ram (from above) into our contour which
runs along the x-axis. So we prepare for this as follows. Since the only singularity near
the real axis is the explicit pole as z=ig, we make the following deformation of the
contour without changing the value of I: the contour runs along the real axis from
—o0 to —¢', (¢ is another positive infinitesimal) goes around counterclockwise, below
the origin in a semicircle of radius &', and resumes along the real axis from x= ¢ to
o0. The nice thing is that we can now set £=0, which brings the pole to the origin.
The three parts of the integration contour contribute as follows:

I=lim [ Aty d"+rf () d"+mf(0)]
£-01J) X - X
= r 1) dx v). (A43)
e X

The sum of the two integrals in the limit &' —0 is defined as the principal value integral
denoted by the symbol 2. In the last term, which is restricted to the infinitesimal
neighbourhood of the origin, we have set the argument of the smooth function f to
zero and done the integral of dz/z counterclockwise around the semicircle to get in.

Eq. (A.4.1) is a compact way to say all this. It is understood that Eq. (A.4.1)
is to be used inside an integral only and that inside an integral the factor 1/(x —ig)
leads to two terms: the first, 22(1/x), leads to the principal value integral, and the
second, in8(x), leads to inf(0).

It is clear that if we reverse the sign of the & term, we change the sign of the delta
function since the semicircle now goes around the pole in the clockwise direction. The
principal part is not sensitive to this change of direction and is unaffected.

It is clear that if we replace x by x —a the pole moves from the origin to x=a
and f(0) gets replaced by f(a) so that we may write

! =2
(x—a)Fic (x—a)

tind(x—a) (Ad4)

It is clear that the limits on x need not be oo for the formula to work.



Finally, note that according to Eq. (A.4.4) the difference between the integrals
with two signs of ¢ is just 2zif(a). This too agrees with the present analysis in
terms of the integral I in Eq. (A.4.2) since in the difference of the two integrals the
contribution along the real axis cancels due to opposite directions of travel except
for the part near the pole where the difference of the two semicircles (one going
above and going below the pole) is a circle around the pole.
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Answers to Selected Exercises

Chapter 1
1 L[S e
1.8.1. (1) |co=1>—{?} |w=2>—>(~36m{—ﬂ, Iw=4>—>(ﬂ10)-ﬁ{ﬂ
(2) No, no.
1.82. (1) Yes

0 jw=0y={1], lo=Dmsl0| @==D=a| 0

1.8.10. ©=0,0,2;4=2,3,-1
Chapter 4

42.1. (1) 1,0, -1
(2) (Loy=0,{Ly=1/2,AL=1 2\

1/2 —1/2'7?
(3) |Lx=1>_{1/2‘/2}, |Lx=0>-{ 0 }
1/2 1/2'?
1/2
1Lx=—1>-{—1/2‘/2}
1/2
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@

6

(6)

Chapter 5

5.4.2. (a)

P(L,=1)=1/4, P(L,=0)=1/2, P(L,=-1)=1/4 1

1/2
1
S —— = projection of on the L?=1 eigen-
/4 +1/2)7 2 prel v &
space. P(LZ=1)=3/4. If L, is measured P(L,=1)=1/3, P(L,=—1)=
2/3. Yes, the state changes. ]

7

No. To see this right away note that if 8,=8,=8;=0, |y>=1]L,=1)
and if ,=83=0 and 3,=n7, |y)=|L,=—1). [See answer to part (3).]
The vectors |y) and e|y) are physically equivalent only in the sense
that they generate the same probability distribution for any observable.
This does not mean that when the vector |y ) appears as a part of a
linear combination it can be multiplied by an arbitrary phase factor. In
our example one can only say, for instance, that

lw>'=ey)
i(82—6y)

1 (63— 61)
= L= 1Y +———|L,=0)+
2l > 5 l >

e

|L.=—i)

1/2

is physically equivalent to {w). Although |y )’ has different coefficients
from |y in the linear expansion, it has the same “‘direction” as [y ). In
summary, then, the relative phases §,— &8, and 85— &, are physically
relevant but the overall phase is not, as you will have seen in the calcula-
tion of P(L,=0). i

R=(maVy)*/(Fk*+m*a*V3); T=1—R

(b) T=(cosh®2xa+a’sinh®2xa)”" where ix is the complex wave number

Chapter 7

for |x| <a and a = (Vo—2E)/[AE(Vo— E)]">.

742. 0, 0, (n+1/2f/mw, (n+1/2)mwh, (n+1/2)%. Note that the recipe
mo—(mo)”" is at work here.

7.4.5. (1)
(2)
(3)

(1/21/2)(|0> e—iml/2+'1> e—3iml/2)

X(D)> = (h/2mw)'? cos wt, (P(t)> =—(mot/2)'*sin ot

X)) =R X, H]) =<{P(1)> /m, {B(t))=—ma’(X(t)). By elimin-
ating (P) we can get an equation for (X (#)> and vice versa and solve it
using the initial values (X(0)> and d{P(0)), eg., <{X(O)>=
{X(0)> cos mt+ [(P(0)>/mw] sin ot.



Chapter 10

10.3.2. 3717|334 +(343) +(433)]

Chapter 12

126.1. E=—#/2uda;, V=—#/payr

Chapter 13
13.3.1. Roughly 200 MeV,

13.3.2. Roughly 1 A.

Chapter 14

1435 M= (“ +5)I+<ﬂ+ y)ox+i(ﬁ"7
2 2

S

14.3.7. (1) 2"*(cos n/8+i(sin n/8)c,).
(2) 2/3I-1/30,.
(3) o

14.4.4. Roughly 2 x 107° second.

14.4.6. (efi/2mc) tanh(e#iB/2mckT)k

14.5.2. (1) Roughly one part in a million.

(2) 10°G.

1453. 1/2,1/4,0.

2
14.5.4. (1 +°2°S 0)

Chapter 15

15.2.2. (1) <11,1/2(=1/2)|13/21/2>=(1/3)'"?
{10,1/21/2|3/21/2>=(2/3)""?
A1, 1/2(=1/2)11/21/2)=(2/3)""*
<10,1/21/2(1/21/2>=—(1/3)""*

Jors(#%)e.
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(2) im>=12, 1>=2""m =1, my=0>+2""?\m, =0, my=1)
12,05=6"71, 1> +(5)/10, 0>+ (' -1, 1>
[1,1>=2""%1,0>-2""30, 1>
[1,0)=2""%1, -1>-2""-1, 1)

[0,05=3""71, =1>=37"%0,0>+37"3-1, 1)

The others are either zero, obvious, or follow from Eq. (15.2.11).

. 2 _ . 2
1526 p,=PLSYAHIHL -y [ZQLIS)/E
2+1 20+1

b

Chapter 16

16.1.2.  E(a)=10E,/x’
16.1.3. —mayVi/nk?
16.1.4. E(a0)=%ﬁa,(%)l/2

16.2.4. Roughly 1.5 x 10" seconds or 10'° years.



Table of Constants

fic=19733eV A
a=¢é"/fic=1/137.04
mc*=0.511 MeV (m is the electron mass)
Mc*=938.28 MeV (M is the proton mass)
ay=H/me*=0.511 A
efi/2mc=0.58 x107*eV/G (Bohr magneton)
k=8.62x107eV/K
kT~1/40eV at T=300K (room temperature)
1eV=1.6x10""erg

Mnemonics for Hydrogen
In the ground state,

v/ie=f=a
1 1
E =—-T=-5smv*=—3imca’

muvay= fi

In higher states, E,=E, /n’.
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Index

Absorption spectrum, 368
Accidental degeneracy
free-particle case, 426

harmonic oscillator case, 352, 423

hydrogen atom case, 359, 422
Actinides, 371
Active transformations, 29, 280
Adjoint, 13, 25, 26
Aharonov-Bohm effect, 497
Angular momentum
addition of
J+J, 408
L+S, 414
S+8S, 403
commutation rules, 319
eigenfunctions, 324, 333
eigenvalue problem of, 321
spin, 373
in three dimensions, 318
in two dimensions, 308
Anticommutation relations, 640
Anti-Hermitian operators, 27
Antisymmetric states, 261
Anyons, 607

Balmer series, 367
Basis, 6

Berry phase, 592
Berry potential, 603
Bohr magneton, 389
Bohr model, 364
Bohr radius, 244, 357

Bohr-Sommerfeld quantization rule, 448

Born approximation
time-dependent, 529
time-independent, 534
validity of, 543

Bose-Einstein statistics, 271
Bosons, 263
Bound states, 160, 445
energy quantization in, 160
Bra, 11
Breit-Wigner form, 551
de Broglie waves, 112, 366
Double well, 616
tunneling in, 616

Canonical commutation rule, 131

Canonically conjugate operators, 69

Canonical momentum, 80
electromagnetic case, 84
Canonical transformations
active, 97
introduction to, 92
point transformations, 94
regular, 97
Center of mass (CM), 85
Centrifugal barrier, 340
Characteristic equation, 33
Characteristic polynomial, 33
Chemical potential, 641
Classical limit, 179
Classical radius of electron, 364
Clebsch-Gordan coefficients, 412
Cofactor matrix, 656
Coherent states
fermionic, 642
oscillator, 607
spin, 636
Collapse of state vector, 122, 139
Commutator, 20
Compatible variables, 129
Completeness relation, 23, 59
Complete set of observables, 133
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Complex numbers, 660
Compton scattering, 123
Compton wavelength, 246
electronic, 363
Condon-Shortley convention, 410
Configuration space, 76
Consistency test
for three-dimensional rotations, 318
for translations, 306, 312
for translations and rotations, 310
Coordinates
canonical, 94
center-of-mass, 85
cyclic, 81
relative, 85
Correlation function, 628
connected, 634
Correlation length, 629
Correspondence principle, 197
Coulomb scattering, 531
Coupled mass problem, 46
Creation operator, 205
Cross section
in CM frame, 557
differential, 526, 529
for Gaussian potential, 533
for hard sphere, 549
in lab frame, 559
partial, 548
photoelectric, 506
Rutherford, 531
for Yukawa potential, 531
Cyclotron frequency, 588

Dalgarno and Lewis method, 462
Darwin term, 572
Degeneracy, 38, 44, 120
Density matrix, 133
Derivative operator, 63
eigenvalue problem for, 66
matrix elements of, 64
Destruction operator, 205
Determinant, 29
Diagonalization
of Hermitian operator, 40
simultaneous, 43
Differential cross section, 526, 529
Dipole approximation, 502
Dipole moment, 463
Dipole selection rule, 465
Dirac delta function, 60
definition of, 60
derivatives of, 61
Gaussian approximation for, 61
integral representation of, 63
three-dimensional, 342

Dirac equation
electromagnetic, 566
free particle, 565
Dirac monopole, 605
Dirac notation, 3
Dirac string, 605
Direct product
of operators, 250
spaces, 249
Double-slit experiment, 108
quantum explanation of, 175
Dual spaces, 11

Ehrenfest’s theorem, 180
Eigenket, 30
Eigenspace, 37
Eigenvalue problem, 30
Eigenvector, 30
Einstein temperature, 220
Electromagnetic field
interactions with matter, 83, 90, 499
quantization of, 506
review of, 492
Ensemble
classical, 125
mixed, 133
quantum, 125
Euclidean Lagrangian, 614
Euler angles, 333
Euler-Lagrange equations, 79
Exchange operator, 278
Exclusion principle, 264
Expectation value, 127

Fermi-Dirac statistics, 270

Fermionic oscillator, 640
thermodynamics of, 642

Fermi’s golden rule, 483

Fermions, 263

Field, 2

Filling factor, 591

Fine-structure constant, 362

Fine-structure correction, 367, 466

Fourier transform, 62

Free-particle problem
cartesian coordinates, 151
spherical coordinates, 426

Functional, 77

Functions of operators, 54

Gauge
Coulomb, 494
invariance, 493, 496
transformations, 493, 496
Gaussian integrals, 659



Gaussian potential, 533 Inelasticity, 554 673

Generalized force, 80 Infinite-dimensional spaces, 57

Generalized potential, 84 Inner product, 8 INDEX
Geometric phase, 593 Inner product space, 7

Gram-Schmidt theorem, 14 Inverse of operator, 20, 655

Grassmann numbers, 642 lonic bond, 370

Green’s function, 534 Irreducible space, 330

Gyromagnetic ratio, 386 Irreducible tensor operator, 418

Ising model, 627

Hamiltonian formulation, 86

Hamilton’s equations, 838 Ket, 3
Harmonic oscillator Klein-Gordon equation, 564
classical, 83 Kronecker’s delta, 10

fermionic, 640
isotropic, 260, 351
quantum, 185
in the coordinate basis, 189
in the energy basis, 202
energy levels of, 194
propagator for, 196
wave functions of, 195, 202
thermodynamics of, 219
three-dimensional, 260, 351
two-dimensional, 316
Heisenberg picture, 147, 490
Hermite polynomials, 490
Hermitian operators, 27
diagonalization of, 40
simultaneous, 43
eigenbases of, 36
eigenvalues of, 35
eigenvectors of, 36
infinite-dimensional, 65
Hilbert space, 67

Lagrangian, 76
for electromagnetic interactions, 83
Laguerre polynomial, 356
Lamb shift, 574
Landau Level, 587, 588
Laughlin wave function, 592
Laughlin quasihole, 607
Least action principle, 77
Legendre transform, 87
Linear independence, 4
Linear operators, 18
Lorentz spinor, 566
Lowering operator
angular momentum, 322
for harmonic oscillator, 205
see also Destruction operator
Lowest Landau Level, 588
Lyman series, 367

bosonic, 265 Magnetic moment, 385
fermionic, 265 Magnetic quantum number, 314
normal mode problem in, 70 Matrix elements, 20
for two particles, 265 Matrix inversion, 655

‘t Hooft, 619 Mendeleev, 370

Hydrogen atom Metastable states, 553
degeneracy of, 359 Minimum uncertainty packet, 241
energy levels of, 356 Multielectron atoms, 369

21-cm line, 408
wave functions of, 356, 357

Hyperfine interaction, 407 Negative absolute temperature, 394
Norm, 9
Normal modes, 52
Ideal measurement, 122 Number operator, 207
Identical particles Numerical estimates, 361
bosons, 263
definition of, 260
fermions, 263 Operators, 18
Identity operator, 19 adjoint of, 25
Impact parameter, 523 anti-Hermitian, 27
Improper vectors, 67 conjugate, 69
Incompatible variables, 128 derivatives of, 55

Induced emission, 521 functions of, 54
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Hermitian, 27
identity, 22
infinite-dimensional, 63
inverse of, 20
linear, 18
matrix elements of, 21
product of, 20
projection, 22
unitary, 28
Optical theorem, 548, 555
Orthogonality, 9
Orthogonal matrix, 28
Orthonormality, 9
Outer product, 23

Paramagnetic resonance, 392
Parity invariance, 297
Partial wave
amplitude, 545
expansion, 545
Particle in a box, 157, 259
Paschen series, 367
Passive transformation, 29, 280
Path integral
coherent state, 607, 610
configuration space, 582
definition, 223
fermionic, 646
free particle, 225, 582
imaginary time, 614
phase space, 586
recipe, 223
and Schrodinger’s equation, 229
statistical mechanics, 624
Pauli equation, 568
Pauli exclusion principle, 264
Pauli matrices, 381
Periodic table, 370
Perturbations
adiabatic, 478
periodic, 482
sudden, 477
time-independent, 451
Phase shift, 546
Phase space, 88
Phonons, 198
Photoelectric effect, 111, 499
Photons, 110, 198
quantum theory of, 516
Physical Hilbert space, 67
Pictures
Heisenberg, 147, 490
interaction (Dirac), 485
Schrodinger, 147, 484
Planck’s constant, 111
Poisson brackets, 92
invariance of, 96

Polarizability, 464
P operator, 116
Population inversion, 395
Postulates, 115, 211
Probability amplitude, 111, 121
Probability current density, 166
Probability density, 121
Product basis, 403
Projection operator, 23
Propagator
for coupled masses, 51
Feynman’s, 578
for free particle, 153
for Gaussian packet, 154
for harmonic oscillator, 615
for (classical) string, 72
Proper vectors, 67
Pseudospin, 639

Quadrupole tensor, 425

Quanta, 197

Quantization of energy, 160
Quantum Hall Effect (QHE), 589

Radial equation
in three dimensions, 339
in two dimensions, 316
Radial part of wave function
in three dimensions, 339
in two dimensions, 316
Raising operator
for angular momentum, 222
for harmonic oscillator, 205
Range of potential, 525
Rare earth elements, 371
Ray, 118
Recursion relation, 193
Reduced mass, 86
Reduced matrix element, 420
Reflection coefficient, 168
Resonances, 550
Rotations
generators of (classical), 100
generators of (quantum), 308
invariance under (classical), 100
invarianc¢e under (quantum), 310
Runge-Lenz vector, 360, 422
Rutherford cross section, 531
Rydberg, 355

Scattering
general theory, 523
of identical particles, 560
from step potential, 167
of two particles, 555
Scattering amplitude, 527



Schrodinger equation

equivalence to path integral, 229

time-dependent, 116, 143

time-independent, 145
Schrodinger picture, 147, 484
Schwartz inequality, 16
Selection rule

angular momentum, 458, 459

dipole, 459

general, 458
Shell, 370
Singlet, 405
§ matrix

definition of, 529

partial wave, 547
Spectroscopic notation, 350

modified, 415
Spherical Bessel functions, 348
Spherical Hankel functions, 348
Spherical harmonics, 335, 336
Spherical Neumann functions, 348
Spin, 325, 373
Spinor, 375
Spin-orbit interaction, 468
Spin statistics theorem, 264
Spontaneous decay, 517
Spontaneous emission, 521
Square-well potential, 164
Stark effect, 459, 465
Stationary states, 146
Statistics, 264

determination of, 269
Stem-Gerlach experiment, 399
Subspaces, 17
Superposition principle, 117
Symmetric states, 263
Symmetries

classical, 98

quantum, 279

spontaneous breakdown of, 620

Tensor

antisymmetric (£y), 319

cartesian, 417

irreducible, 418

operator, 417

quadrupole, 425

second rank, 418

spherical, 417
Thermal wavelength, 625
Thomas factor, 468, 571
Thomas—Reiche-Kuhn rule, 457
Time-ordered integral, 148
Time-ordering symbol, 633, 651
Time-reversal symmetry, 301
Time translation invariance, 294
Top state, 410

Total § basis, 405 675
Trace, 30
Transformations, 29 INDEX

active, 29, 97, 280

canonical, 92

generator of, 99, 283

identity, 98

passive, 29, 280, 284

point, 94

regular, 97

unitary, 27
Translated state, 280
Translation

finite, 289

generator of, 100, 283

operator, 280
Translational invariance

implications of, 98, 292

in quantum theory, 279
Transmission coefficient, 168
Transverse relaxation time, 395
Triangle inequality, 116, 412
Triplets, 405
Tunneling, 175, 616
Two-particle Hilbert space, 247

Uncertainty, 128
Uncertainty principle
applications of, 198
derivation of, 237
energy-time, 245
physical basis of, 140
Uncertainty relation, 138
Unitarity bound, 548
Unitary operator, 27
eigenvalues of, 39
eigenvectors of, 39

Variational method, 429
Vector addition coefficients, 412
Vectors
components of, 6
improper, 67
inner product of, 8
norm of, 9
orthogonality of, 9
outer product of, 25
proper, 67
Vector operator, 313
Vector space
axioms for, 2
basis for, 6
dimensionality of, 5
field of, 2
of Hilbert, 67
infinite dimensional, 57
subspace of, 17
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Virial theorem, 212
for hydrogen, 359, 471

Wave functions, 121
Wave-particle duality, 113
Waves

interference of, 108

matter, 112

plane, 108
Wick’s theorem, 645
Wigner—Eckart theorem, 420
WXKB approximation

and bound states, 445

introduction to, 435
and path integrals, 438
three-dimensional, 449
and tunneling, 444

X operator, 68
matrix elements of, 68

Yukawa potential, 531

Zeemann effect, 398
Zero point energy, 198



